Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Fitoterapia ; 177: 106070, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38897254

RESUMEN

The Croton genus (Euphorbiaceae) is recognized as a promising source for identifying bioactive compounds with antiproliferative activity. However, knowledge on the chemical composition and activity of Croton floribundus, Croton echinocarpus, and Croton zehntneri is limited. Thus, this study aimed to investigate the antiproliferative activity of these species on cells derived from tumoral breast, lung, and melanoma cells, and primary fibroblasts derived from human skin. Metabolomic strategies were applied via ultra-performance liquid chromatography coupled with high-resolution mass spectrometry and multivariate statistical analysis to target the main active compound. The C. floribundus leaf extract exhibited the highest activity, with an IC50 value lower than that of the reference drug - temozolomide - in the most responsive cell line - SK-MEL-147 - and in all the evaluated melanoma cell lines (SK-MEL-147, CHL-1 and WM-1366). Four tetrahydrofurofuran lignans were isolated for the first time from the most promising fraction of the C. floribundus extract. According to the metabolomic and multivariate statistical analyses, the isolated lignan epi-yangambin constituted the main antiproliferative compound against SK-MEL-147; furthermore, it exhibited selective antiproliferative activity for this cell line (IC50 = 13.09 µg/mL and selectivity index = 3.82; temozolomide, IC50 = 121.50 µg/mL) due to, at least in part, its ability to inhibit cell cycle progression at G2/M. This is especially relevant considering the high resistance of melanoma cells to available drugs. Thus, epi-yangambin can serve as a prototype for further antiproliferative investigations.


Asunto(s)
Antineoplásicos Fitogénicos , Croton , Lignanos , Melanoma , Metabolómica , Hojas de la Planta , Humanos , Línea Celular Tumoral , Melanoma/tratamiento farmacológico , Croton/química , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/aislamiento & purificación , Lignanos/farmacología , Lignanos/aislamiento & purificación , Hojas de la Planta/química , Estructura Molecular , Extractos Vegetales/farmacología , Extractos Vegetales/química , Proliferación Celular/efectos de los fármacos , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Furanos/farmacología , Furanos/aislamiento & purificación
2.
Metabolites ; 10(6)2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32630389

RESUMEN

In this era of precision medicine, there is an increasingly urgent need for highly sensitive tests for detecting tumors such as colon cancer (CC), a silent disease where the first symptoms may take 10-15 years to appear. Mass spectrometry-based lipidomics is an emerging tool for such clinical diagnosis. We used ultra-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry operating in high energy collision spectral acquisition mode (MSE) mode (UPLC-QTOF-MSE) and gas chromatography (GC) to investigate differences between the plasmatic lipidic composition of CC patients and control (CTR) subjects. Key enzymes in lipidic metabolism were investigated using immuno-based detection assays. Our partial least squares discriminant analysis (PLS-DA) resulted in a suitable discrimination between CTR and CC plasma samples. Forty-two statistically significant discriminating lipids were putatively identified. Ether lipids showed a prominent presence and accordingly, a decrease in glyceronephosphate O-acyltransferase (GNPAT) enzyme activity was found. A receiver operating characteristic (ROC) curve built for three plasmalogens of phosphatidylserine (PS), named PS(P-36:1), PS(P-38:3) and PS(P-40:5), presented an area under the curve (AUC) of 0.998, and sensitivity and specificity of 100 and 85.7% respectively. These results show significant differences in CC patients' plasma lipid composition that may be useful in discriminating them from CTR individuals with a special role for plasmalogens.

3.
Int J Mol Sci ; 21(10)2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32443844

RESUMEN

Plasma and tissue from breast cancer patients are valuable for diagnostic/prognostic purposes and are accessible by multiple mass spectrometry (MS) tools. Liquid chromatography-mass spectrometry (LC-MS) and ambient mass spectrometry imaging (MSI) were shown to be robust and reproducible technologies for breast cancer diagnosis. Here, we investigated whether there is a correspondence between lipid cancer features observed by desorption electrospray ionization (DESI)-MSI in tissue and those detected by LC-MS in plasma samples. The study included 28 tissues and 20 plasma samples from 24 women with ductal breast carcinomas of both special and no special type (NST) along with 22 plasma samples from healthy women. The comparison of plasma and tissue lipid signatures revealed that each one of the studied matrices (i.e., blood or tumor) has its own specific molecular signature and the full interposition of their discriminant ions is not possible. This comparison also revealed that the molecular indicators of tissue injury, characteristic of the breast cancer tissue profile obtained by DESI-MSI, do not persist as cancer discriminators in peripheral blood even though some of them could be found in plasma samples.


Asunto(s)
Neoplasias de la Mama/metabolismo , Carcinoma Ductal/metabolismo , Metabolismo de los Lípidos , Lipidómica/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/sangre , Carcinoma Ductal/sangre , Femenino , Humanos , Lípidos/sangre , Persona de Mediana Edad
4.
J Ethnopharmacol ; 255: 112743, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32171895

RESUMEN

ETHNOPHARMACOLOGY RELEVANCE: Ayahuasca is a tea produced through decoction of Amazonian plants. It has been used for centuries by indigenous people of South America. The beverage is considered to be an ethnomedicine, and it is traditionally used for the treatment of a wide range of diseases, including neurological illness. Besides, some scientific evidence suggests it may be applicable to Parkinson's disease (PD) treatment. Thus, Ayahuasca deserves in depth studies to clarify its potential role in this disease. AIM OF THE STUDY: This study aimed to use an untargeted metabolomics approach to evaluate the neuroprotective potential of the Ayahuasca beverage, the extracts from its matrix plants (Banisteriopsis caapi and Psychotria viridis), its fractions and its main alkaloids on the viability of SH-SY5Y neuroblastoma cells in an in vitro PD model. MATERIAL AND METHODS: The cytotoxicity of Ayahuasca, crude extracts, and fractions of B. caapi and P. viridis, as well as neuroprotection promoted by these samples in a 6-hydroxydopamine (6-OHDA)-induced neurodegeneration model, were evaluated by the MTT assay at two time-points: 48 h (T1) and 72 h (T2). The main alkaloids from Ayahuasca matrix plants, harmine (HRE) and N,N-dimethyltryptamine (DMT), were also isolated and evaluated. An untargeted metabolomics approach was developed to explore the chemical composition of samples with neuroprotective activity. Ultra-Performance Liquid Chromatography coupled to Electrospray Ionisation and Time-of-Flight (UPLC-ESI-TOF) metabolome data was treated and further analysed using multivariate statistical analyses (MSA): principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). The metabolites were dereplicated using the Dictionary of Natural Products and an in house database. The main alkaloids were also quantified by UPLC-MS/MS. RESULTS: The samples did not cause cytotoxicity in vitro and three of samples intensely increased cell viability at T1. The crude extracts, alkaloid fractions and HRE demonstrated remarkable neuroprotective effect at T2 while the hydroalcoholic fractions demonstrated this neuroprotective effect at T1 and T2. Several compounds from different classes, such as ß-carbolines and monoterpene indole alkaloids (MIAs) were revealed correlated with this property by MSA. Additionally, a total of 2419 compounds were detected in both ionisation modes. HRE showed potent neuroprotective action at 72 h, but it was not among the metabolites positively correlated with the most efficacious neuroprotective profile at either time (T1 and T2). Furthermore, DMT was statistically important to differentiate the dataset (VIP value > 1), although it did not exhibit sufficient neuroprotective activity by in vitro assay, neither a positive correlation with T1 and T2 neuroprotective profile, which corroborated the MSA results. CONCLUSION: The lower doses of the active samples stimulated neuronal cell proliferation and/or displayed the most efficacious neuroprotection profile, namely by preventing neuronal damage and improving cell viability against 6-OHDA-induced toxicity. Intriguingly, the hydroalcoholic fractions exhibited enhanced neuroprotective effects when compared to other samples and isolated alkaloids. This finding corroborates the significance of a holistic approach. The results demonstrate that Ayahuasca and its base plants have potential applicability for PD treatment and to prevent its progression differently from current drugs to treat PD.


Asunto(s)
Antiparkinsonianos/farmacología , Banisteriopsis/química , Metabolómica , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Psychotria/química , Antiparkinsonianos/aislamiento & purificación , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Etnofarmacología , Humanos , Análisis de los Mínimos Cuadrados , Neuronas/efectos de los fármacos , Neuronas/patología , Fármacos Neuroprotectores/aislamiento & purificación , Oxidopamina/toxicidad , Extractos Vegetales/aislamiento & purificación , Polisacáridos , Análisis de Componente Principal , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
5.
Biomed Res Int ; 2019: 4978018, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31737665

RESUMEN

Chronic exposure to arsenic (As), whether directly through the consumption of contaminated drinking water or indirectly through the daily intake of As-contaminated food, is a health threat for more than 150 million people worldwide. Epidemiological studies found an association between chronic consumption of As and several pathologies, the most common being cancer-related disorders. However, As consumption has also been associated with metabolic disorders that could lead to diverse pathologies, such as type 2 diabetes mellitus, nonalcoholic fatty liver disease, and obesity. Here, we used ultra-performance liquid chromatography (UPLC) coupled to electrospray ionization/quadrupole time-of-flight mass spectrometry (ESI-QToF) to assess the effect of chronic intergenerational As exposure on the lipid metabolism profiles of serum from 4-month-old Wistar rats exposed to As prenatally and also during early life in drinking water (3 ppm). Significant differences in the levels of certain identified lysophospholipids, phosphatidylcholines, and triglycerides were found between the exposed rats and the control groups, as well as between the sexes. Significantly increased lipid oxidation determined by the malondialdehyde (MDA) method was found in exposed rats compared with controls. Chronic intergenerational As exposure alters the rat lipidome, increases lipid oxidation, and dysregulates metabolic pathways, the factors associated with the chronic inflammation present in different diseases associated with chronic exposure to As (i.e., keratosis, Bowen's disease, and kidney, liver, bladder, and lung cancer).


Asunto(s)
Arsénico/toxicidad , Agua Potable/efectos adversos , Metabolismo de los Lípidos/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Lisofosfolípidos/sangre , Animales , Cromatografía Líquida de Alta Presión , Agua Potable/química , Humanos , Redes y Vías Metabólicas/efectos de los fármacos , Ratas , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
6.
J Am Soc Mass Spectrom ; 28(11): 2401-2407, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28786095

RESUMEN

Atmospheric solids analysis probe mass spectrometry (ASAP-MS) is a powerful tool for analysis of solid and liquid samples. It is an excellent alternative for crude oil analysis without any sample preparation step. Here, ASAP-MS in positive ion mode, ASAP(+)-MS, has been optimized for analysis of condensed aromatics (CA) standards, crude oil, and paraffinic fraction samples using a Synapt G2-S HDMS. Initially, two methodologies were used to access the chemical composition of samples: (1) using a temperature gradient varying from 150 to 600 °C at a heating rate of 150 °C min-1, and (2) with constant temperature of 300 and 400 °C. ASAP(+)-MS ionized many compounds with a typical petroleum profile, showing a greater signals range of m/z 250-1300 and 200-1400 for crude oil and paraffin samples, respectively. Such performance, mainly related to the detection of high molecular weight compounds (>1000 Da), is superior to that of other traditional ionization sources, such as ESI, APCI, DART, and DESI. Additionally, the CA standards were identified in both forms: radicals, [M]+•, and protonated cations, [M + H]+, with minimum fragmentation. Therefore, ASAP was more efficient in accessing the chemical composition of nonpolar and polar compounds. It is promising in its application with ultrahigh resolution MS instruments, such as FT-ICR MS and Orbitrap, since molecular formulas with greater resolution and mass accuracy (<1 ppm) would be assigned. Graphical Abstract ᅟ.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA