Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Am J Respir Crit Care Med ; 207(12): 1565-1575, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37212596

RESUMEN

Rationale: Indirect airway hyperresponsiveness (AHR) is a highly specific feature of asthma, but the underlying mechanisms responsible for driving indirect AHR remain incompletely understood. Objectives: To identify differences in gene expression in epithelial brushings obtained from individuals with asthma who were characterized for indirect AHR in the form of exercise-induced bronchoconstriction (EIB). Methods: RNA-sequencing analysis was performed on epithelial brushings obtained from individuals with asthma with EIB (n = 11) and without EIB (n = 9). Differentially expressed genes (DEGs) between the groups were correlated with measures of airway physiology, sputum inflammatory markers, and airway wall immunopathology. On the basis of these relationships, we examined the effects of primary airway epithelial cells (AECs) and specific epithelial cell-derived cytokines on both mast cells (MCs) and eosinophils (EOS). Measurements and Main Results: We identified 120 DEGs in individuals with and without EIB. Network analyses suggested critical roles for IL-33-, IL-18-, and IFN-γ-related signaling among these DEGs. IL1RL1 expression was positively correlated with the density of MCs in the epithelial compartment, and IL1RL1, IL18R1, and IFNG were positively correlated with the density of intraepithelial EOS. Subsequent ex vivo modeling demonstrated that AECs promote sustained type 2 (T2) inflammation in MCs and enhance IL-33-induced T2 gene expression. Furthermore, EOS increase the expression of IFNG and IL13 in response to both IL-18 and IL-33 as well as exposure to AECs. Conclusions: Circuits involving epithelial interactions with MCs and EOS are closely associated with indirect AHR. Ex vivo modeling indicates that epithelial-dependent regulation of these innate cells may be critical in indirect AHR and modulating T2 and non-T2 inflammation in asthma.


Asunto(s)
Asma , Hipersensibilidad Respiratoria , Humanos , Interleucina-18 , Interleucina-33/genética , Células Epiteliales/patología , Inflamación , Inmunidad Innata
2.
J Allergy Clin Immunol ; 151(6): 1484-1493, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36708815

RESUMEN

BACKGROUND: Mast cells (MCs) within the airway epithelium in asthma are closely related to airway dysfunction, but cross talk between airway epithelial cells (AECs) and MCs in asthma remains incompletely understood. Human rhinovirus (RV) infections are key triggers for asthma progression, and AECs from individuals with asthma may have dysregulated antiviral responses. OBJECTIVE: We utilized primary AECs in an ex vivo coculture model system to examine cross talk between AECs and MCs after epithelial rhinovirus infection. METHODS: Primary AECs were obtained from 11 children with asthma and 10 healthy children, differentiated at air-liquid interface, and cultured in the presence of laboratory of allergic diseases 2 (LAD2) MCs. AECs were infected with rhinovirus serogroup A 16 (RV16) for 48 hours. RNA isolated from both AECs and MCs underwent RNA sequencing. Direct effects of epithelial-derived interferons on LAD2 MCs were examined by real-time quantitative PCR. RESULTS: MCs increased expression of proinflammatory and antiviral genes in AECs. AECs demonstrated a robust antiviral response after RV16 infection that resulted in significant changes in MC gene expression, including upregulation of genes involved in antiviral responses, leukocyte activation, and type 2 inflammation. Subsequent ex vivo modeling demonstrated that IFN-ß induces MC type 2 gene expression. The effects of AEC donor phenotype were small relative to the effects of viral infection and the presence of MCs. CONCLUSIONS: There is significant cross talk between AECs and MCs, which are present in the epithelium in asthma. Epithelial-derived interferons not only play a role in viral suppression but also further alter MC immune responses including specific type 2 genes.


Asunto(s)
Asma , Infecciones por Enterovirus , Infecciones por Picornaviridae , Niño , Humanos , Interferones , Rhinovirus/fisiología , Mastocitos/metabolismo , Epitelio/metabolismo , Células Epiteliales , Antivirales/farmacología , Inmunidad
3.
Eur Respir J ; 60(2)2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35027395

RESUMEN

BACKGROUND: Eosinophils are implicated as effector cells in asthma, but the functional implications of the precise location of eosinophils in the airway wall is poorly understood. We aimed to quantify eosinophils in the different compartments of the airway wall and associate these findings with clinical features of asthma and markers of airway inflammation. METHODS: In this cross-sectional study, we utilised design-based stereology to accurately partition the numerical density of eosinophils in both the epithelial compartment and the subepithelial space (airway wall area below the basal lamina including the submucosa) in individuals with and without asthma and related these findings to airway hyperresponsiveness (AHR) and features of airway inflammation. RESULTS: Intraepithelial eosinophils were linked to the presence of asthma and endogenous AHR, the type that is most specific for asthma. In contrast, both intraepithelial and subepithelial eosinophils were associated with type 2 (T2) inflammation, with the strongest association between IL5 expression and intraepithelial eosinophils. Eosinophil infiltration of the airway wall was linked to a specific mast cell phenotype that has been described in asthma. We found that interleukin (IL)-33 and IL-5 additively increased cysteinyl leukotriene (CysLT) production by eosinophils and that the CysLT LTC4 along with IL-33 increased IL13 expression in mast cells and altered their protease profile. CONCLUSIONS: We conclude that intraepithelial eosinophils are associated with endogenous AHR and T2 inflammation and may interact with intraepithelial mast cells via CysLTs to regulate airway inflammation.


Asunto(s)
Asma , Eosinófilos , Estudios Transversales , Eosinófilos/metabolismo , Humanos , Inflamación/metabolismo , Sistema Respiratorio
4.
Am J Physiol Lung Cell Mol Physiol ; 320(5): L705-L714, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33533300

RESUMEN

The mechanisms responsible for driving endogenous airway hyperresponsiveness (AHR) in the form of exercise-induced bronchoconstriction (EIB) are not fully understood. We examined alterations in airway phospholipid hydrolysis, surfactant degradation, and lipid mediator release in relation to AHR severity and changes induced by exercise challenge. Paired induced sputum (n = 18) and bronchoalveolar lavage (BAL) fluid (n = 11) were obtained before and after exercise challenge in asthmatic subjects. Samples were analyzed for phospholipid structure, surfactant function, and levels of eicosanoids and secreted phospholipase A2 group 10 (sPLA2-X). A primary epithelial cell culture model was used to model effects of osmotic stress on sPLA2-X. Exercise challenge resulted in increased surfactant degradation, phospholipase activity, and eicosanoid production in sputum samples of all patients. Subjects with EIB had higher levels of surfactant degradation and phospholipase activity in BAL fluid. Higher basal sputum levels of cysteinyl leukotrienes (CysLTs) and prostaglandin D2 (PGD2) were associated with direct AHR, and both the postexercise and absolute change in CysLTs and PGD2 levels were associated with EIB severity. Surfactant function either was abnormal at baseline or became abnormal after exercise challenge. Baseline levels of sPLA2-X in sputum and the absolute change in amount of sPLA2-X with exercise were positively correlated with EIB severity. Osmotic stress ex vivo resulted in movement of water and release of sPLA2-X to the apical surface. In summary, exercise challenge promotes changes in phospholipid structure and eicosanoid release in asthma, providing two mechanisms that promote bronchoconstriction, particularly in individuals with EIB who have higher basal levels of phospholipid turnover.


Asunto(s)
Asma/complicaciones , Eicosanoides/metabolismo , Ejercicio Físico , Fosfolipasas A2 Grupo X/metabolismo , Fosfolípidos/metabolismo , Hipersensibilidad Respiratoria/etiología , Tensoactivos/metabolismo , Adolescente , Adulto , Broncoconstricción , Femenino , Humanos , Hidrólisis , Masculino , Presión Osmótica , Hipersensibilidad Respiratoria/metabolismo , Hipersensibilidad Respiratoria/patología , Esputo , Adulto Joven
5.
JCI Insight ; 2(21)2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-29093264

RESUMEN

Phospholipase A2 (PLA2) enzymes regulate the formation of eicosanoids and lysophospholipids that contribute to allergic airway inflammation. Secreted PLA2 group X (sPLA2-X) was recently found to be increased in the airways of asthmatics and is highly expressed in airway epithelial cells and macrophages. In the current study, we show that allergen exposure increases sPLA2-X in humans and in mice, and that global deletion of Pla2g10 results in a marked reduction in airway hyperresponsiveness (AHR), eosinophil and T cell trafficking to the airways, airway occlusion, generation of type-2 cytokines by antigen-stimulated leukocytes, and antigen-specific immunoglobulins. Further, we found that Pla2g10-/- mice had reduced IL-33 levels in BALF, fewer type-2 innate lymphoid cells (ILC2s) in the lung, less IL-33-induced IL-13 expression in mast cells, and a marked reduction in both the number of newly recruited macrophages and the M2 polarization of these macrophages in the lung. These results indicate that sPLA2-X serves as a central regulator of both innate and adaptive immune response to proteolytic allergen.


Asunto(s)
Inmunidad Adaptativa/inmunología , Alérgenos/inmunología , Asma/inmunología , Fosfolipasas A2 Grupo X/inmunología , Inmunidad Innata/inmunología , Fosfolipasas A2/inmunología , Fosfolipasas A2/metabolismo , Animales , Citocinas/inmunología , Modelos Animales de Enfermedad , Eicosanoides/análisis , Femenino , Eliminación de Gen , Fosfolipasas A2 Grupo X/genética , Fosfolipasas A2 Grupo X/metabolismo , Inmunoglobulinas , Inflamación , Interleucina-13/metabolismo , Interleucina-33/metabolismo , Leucocitos/inmunología , Pulmón/inmunología , Pulmón/metabolismo , Macrófagos , Mastocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
6.
Clin Nephrol ; 87(6): 316-319, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27900940

RESUMEN

Drug reaction with eosinophilia and systemic symptoms (DRESS) is a rare but potentially fatal adverse drug reaction with variable renal involvement. We report the case of a man who presented with allopurinol-induced DRESS and acute kidney injury (AKI) requiring hemodialysis. Kidney biopsy revealed eosinophilic tubulointerstitial nephritis and necrotizing vasculitis of the intralobular arteries without systemic markers of vasculitis. After cyclophosphamide and glucocorticoids, his symptoms and AKI resolved. To our knowledge, this is the first case of kidney-limited necrotizing vasculitis, questioning whether a biopsy should be routinely performed in patients with DRESS accompanied by severe AKI. It is possible that kidney-limited necrotizing vasculitis is an under-diagnosed manifestation of DRESS syndrome, and in such a setting, early recognition, stopping the offending agent, and use of aggressive immunosuppressive therapy, including cyclophosphamide, may lead to a favorable outcome.
.


Asunto(s)
Lesión Renal Aguda , Alopurinol/efectos adversos , Síndrome de Hipersensibilidad a Medicamentos , Necrosis/complicaciones , Nefritis Intersticial/complicaciones , Vasculitis/complicaciones , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA