Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Sci ; 24(21)2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37958979

RESUMEN

Bacterial contamination during space missions is problematic for human health and damages filters and other vital support systems. Staphylococcus aureus is both a human commensal and an opportunistic pathogen that colonizes human tissues and causes acute and chronic infections. Virulence and colonization factors are positively and negatively regulated, respectively, by bacterial cell-to-cell communication (quorum sensing) via the agr (accessory gene regulator) system. When cultured under low-shear modelled microgravity conditions (LSMMG), S. aureus has been reported to maintain a colonization rather than a pathogenic phenotype. Here, we show that the modulation of agr expression via reduced production of autoinducing peptide (AIP) signal molecules was responsible for this behavior. In an LSMMG environment, the S. aureus strains JE2 (methicillin-resistant) and SH1000 (methicillin-sensitive) both exhibited reduced cytotoxicity towards the human leukemia monocytic cell line (THP-1) and increased fibronectin binding. Using S. aureus agrP3::lux reporter gene fusions and mass spectrometry to quantify the AIP concentrations, the activation of agr, which depends on the binding of AIP to the transcriptional regulator AgrC, was delayed in the strains with an intact autoinducible agr system. This was because AIP production was reduced under these growth conditions compared with the ground controls. Under LSMMG, S. aureus agrP3::lux reporter strains that cannot produce endogenous AIPs still responded to exogenous AIPs. Provision of exogenous AIPs to S. aureus USA300 during microgravity culture restored the cytotoxicity of culture supernatants for the THP-1 cells. These data suggest that microgravity does not affect AgrC-AIP interactions but more likely the generation of AIPs.


Asunto(s)
Infecciones Estafilocócicas , Ingravidez , Humanos , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Staphylococcus aureus/metabolismo , Proteínas Quinasas/metabolismo , Percepción de Quorum/genética , Regulación hacia Abajo , Péptidos/metabolismo , Proteínas Bacterianas/metabolismo
2.
Methods Mol Biol ; 1673: 89-96, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29130166

RESUMEN

Strains of the Gram-positive pathogen Staphylococcus aureus can be divided into four quorum sensing (QS) groups. Membership of each group is defined by the amino acid sequence of the autoinducing peptide (AIP) QS signal molecule that is encoded within the agrBDCA genetic locus and specifically within agrD. This chapter describes the use of simple, in-cell, lux-based, bio-reporters that can be used to identify/confirm the specific agr group to which a particular S. aureus isolate belongs, as well as to assess the timing and quantity of AIP produced.


Asunto(s)
Bioensayo/métodos , Sitios Genéticos , Péptidos/análisis , Staphylococcus aureus/metabolismo , Secuencia de Aminoácidos , Genes Reporteros , Cinética , Péptidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA