Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Transl Vis Sci Technol ; 13(7): 5, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38967936

RESUMEN

Purpose: First- (monomers), second- (pre-gelated), and third- (in situ gelating after injection) generation hydrogels were previously introduced to replace the vitreous body after vitrectomy surgery. In this study, we evaluated the surgical, optical, and viscoelastic properties of vitreous body replacement hydrogels before and after an accelerated aging protocol previously applied to intraocular implants. Methods: Measurements of injection force, removal speed using a clinically established vitrectomy setup, as well as evaluation of forward light scattering and viscoelastic properties before and after an accelerated aging protocol were conducted. Results were compared to porcine and human vitreous bodies, as well as currently clinically applied lighter- and heavier-than-water silicone oils. Results: Removal speed of all tested hydrogels is substantially lower than the removal speed of porcine vitreous body (0.2 g/min vs. 2.7 g/min for the best performing hydrogel and porcine vitreous body, respectively). Forward light scattering in second-generation vitreous body replacement hydrogels was higher after the aging process than the straylight of the average 70-year-old vitreous body (9.4 vs. 5.5 deg2/sr, respectively). The viscoelastic properties of all hydrogels did not change in a clinically meaningful manner; however, trends toward greater stiffness and greater elasticity after aging were apparent. Conclusions: This study demonstrates surgical weaknesses of the hydrogels that need to be addressed before clinical use, especially low removal speed. Pre-linked hydrogels (second-generation) showed inferior performance regarding surgical properties compared to in situ gelating hydrogels (third-generation). Translational Relevance: This study highlights possible pitfalls regarding surgical and optical properties when applying vitreous replacement hydrogels clinically.


Asunto(s)
Hidrogeles , Aceites de Silicona , Vitrectomía , Cuerpo Vítreo , Cuerpo Vítreo/cirugía , Animales , Hidrogeles/química , Aceites de Silicona/química , Porcinos , Vitrectomía/métodos , Viscosidad , Humanos , Elasticidad , Anciano , Envejecimiento/fisiología
2.
Gels ; 9(10)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37888410

RESUMEN

To treat certain vitreoretinal diseases, the vitreous body, a hydrogel composed of mostly collagen and hyaluronic acid, must be removed. After vitrectomy surgery, the vitreous cavity is filled with an endotamponade. Previously, pre-clinical hydrogel-based vitreous body substitutes either made from uncrosslinked monomers (1st generation), preformed crosslinked polymers (2nd generation), or in situ gelating polymers (3rd generation) have been developed. Forward light scattering is a measure of Stray light induced by optical media, when increased, causing visual disturbance and glare. During pinhole surgery, the hydrogels are injected into the vitreous cavity through a small 23G-cannula. The aim of this study was to assess if and to what extent forward light scattering is induced by vitreous body replacement hydrogels and if Stray light differs between different generations of vitreous body hydrogel replacements due to the different gelation mechanisms and fragmentation during injection. A modified C-Quant setup was used to objectively determine forward light scattering. In this study, we found that the 1st and 3rd generation vitreous body replacements show very low stray light levels even after injection (2.8 +/- 0.4 deg2/sr and 0.2 +/- 0.2 deg2/sr, respectively) as gel fragmentation and generation of interfaces is circumvented. The 2nd generation preformed hydrogels showed a permanent increase in stray light after injection that will most likely lead to symptoms such as glare when used in patients (11.9 +/- 0.9 deg2/sr). Stray light of the 2nd generation hydrogels was 3- and 2-fold increased compared to juvenile and aged vitreous bodies, respectively. In conclusion, this significant downside in the forward light scattering of the 2nd generation hydrogels should be kept in mind when developing vitreous body replacement strategies, as any source of stray light should be minimized in patients with retinal comorbidities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA