Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cancer Med ; 13(7): e6966, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38572962

RESUMEN

OBJECTIVE: Examine the influence of household income on health-related quality of life (HRQOL) among children with newly diagnosed acute myeloid leukemia (AML). DESIGN: Secondary analysis of data prospectively collected from pediatric patients receiving treatment for AML at 14 hospitals across the United States. EXPOSURE: Household income was self-reported on a demographic survey. The examined mediators included the acuity of presentation and treatment toxicity. OUTCOME: Caregiver proxy reported assessment of patient HRQOL from the Peds QL 4.0 survey. RESULT: Children with AML (n = 131) and caregivers were prospectively enrolled to complete PedsQL assessments. HRQOL scores were better for patients in the lowest versus highest income category (mean ± SD: 76.0 ± 14 household income <$25,000 vs. 59.9 ± 17 income ≥$75,000; adjusted mean difference: 11.2, 95% CI: 2.2-20.2). Seven percent of enrolled patients presented with high acuity (ICU-level care in the first 72 h), and 16% had high toxicity (any ICU-level care); there were no identifiable differences by income, refuting mediating roles in the association between income and HRQOL. Enrolled patients were less likely to be Black/African American (9.9% vs. 22.2%), more likely to be privately insured (50.4% vs. 40.7%), and more likely to have been treated on a clinical trial (26.7% vs. 18.5%) compared to eligible unenrolled patients not enrolled. Evaluations of potential selection bias on the association between income and HRQOL suggested differences in HRQOL may be smaller than observed or even in the opposing direction. CONCLUSIONS: While primary analyses suggested lower household income was associated with superior HRQOL, differential participation may have biased these results. Future studies should partner with patients/families to identify strategies for equitable participation in clinical research.


Asunto(s)
Equidad en Salud , Leucemia Mieloide Aguda , Niño , Humanos , Leucemia Mieloide Aguda/epidemiología , Leucemia Mieloide Aguda/terapia , Calidad de Vida , Sesgo de Selección , Encuestas y Cuestionarios , Ensayos Clínicos como Asunto
2.
bioRxiv ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38659938

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy targeting CD19 elicits remarkable clinical efficacy in B-cell malignancies, but many patients relapse due to failed expansion and/or progressive loss of CAR-T cells. We recently reported a strategy to potently restimulate CAR-T cells in vivo, enhancing their functionality by administration of a vaccine-like stimulus comprised of surrogate peptide ligands for a CAR linked to a lymph node-targeting amphiphilic PEG-lipid (termed CAR-T-vax). Here, we demonstrate a general strategy to generate and optimize peptide mimotopes enabling CAR-T-vax generation for any CAR. Using the clinical CD19 CAR FMC63 as a test case, we employed yeast surface display to identify peptide binders to soluble IgG versions of FMC63, which were subsequently affinity matured by directed evolution. CAR-T vaccines using these optimized mimotopes triggered marked expansion of both murine CD19 CAR-T cells in a syngeneic model and human CAR-T cells in a humanized mouse model of B cell acute lymphoblastic leukemia (B-ALL), and enhanced control of leukemia progression. This approach thus enables vaccine boosting to be applied to any clinically-relevant CAR-T cell product.

3.
Blood Adv ; 8(9): 2182-2192, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38386999

RESUMEN

ABSTRACT: Relapse after CD19-directed chimeric antigen receptor (CAR)-modified T cells remains a substantial challenge. Short CAR T-cell persistence contributes to relapse risk, necessitating novel approaches to prolong durability. CAR T-cell reinfusion (CARTr) represents a potential strategy to reduce the risk of or treat relapsed disease after initial CAR T-cell infusion (CARTi). We conducted a retrospective review of reinfusion of murine (CTL019) or humanized (huCART19) anti-CD19/4-1BB CAR T cells across 3 clinical trials or commercial tisagenlecleucel for relapse prevention (peripheral B-cell recovery [BCR] or marrow hematogones ≤6 months after CARTi), minimal residual disease (MRD) or relapse, or nonresponse to CARTi. The primary endpoint was complete response (CR) at day 28 after CARTr, defined as complete remission with B-cell aplasia. Of 262 primary treatments, 81 were followed by ≥1 reinfusion (investigational CTL019, n = 44; huCART19, n = 26; tisagenlecleucel, n = 11), representing 79 patients. Of 63 reinfusions for relapse prevention, 52% achieved CR (BCR, 15/40 [38%]; hematogones, 18/23 [78%]). Lymphodepletion was associated with response to CARTr for BCR (odds ratio [OR], 33.57; P = .015) but not hematogones (OR, 0.30; P = .291). The cumulative incidence of relapse was 29% at 24 months for CR vs 61% for nonresponse to CARTr (P = .259). For MRD/relapse, CR rate to CARTr was 50% (5/10), but 0/8 for nonresponse to CARTi. Toxicity was generally mild, with the only grade ≥3 cytokine release syndrome (n = 6) or neurotoxicity (n = 1) observed in MRD/relapse treatment. Reinfusion of CTL019/tisagenlecleucel or huCART19 is safe, may reduce relapse risk in a subset of patients, and can reinduce remission in CD19+ relapse.


Asunto(s)
Antígenos CD19 , Inmunoterapia Adoptiva , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Niño , Antígenos CD19/inmunología , Antígenos CD19/uso terapéutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Inmunoterapia Adoptiva/métodos , Inmunoterapia Adoptiva/efectos adversos , Preescolar , Femenino , Masculino , Receptores Quiméricos de Antígenos/uso terapéutico , Adolescente , Recurrencia , Estudios Retrospectivos , Lactante , Receptores de Antígenos de Linfocitos T/uso terapéutico , Resultado del Tratamiento , Linfocitos T/inmunología
4.
J Clin Oncol ; 42(7): 832-841, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38060973

RESUMEN

PURPOSE: The optimal management of fever without severe neutropenia (absolute neutrophil count [ANC] ≥500/µL) in pediatric patients with cancer is undefined. The previously proposed Esbenshade Vanderbilt (EsVan) models accurately predict bacterial bloodstream infections (BSIs) in this population and provide risk stratification to aid management, but have lacked prospective external validation. MATERIALS AND METHODS: Episodes of fever with a central venous catheter and ANC ≥500/µL occurring in pediatric patients with cancer were prospectively collected from 18 academic medical centers. Variables included in the EsVan models and 7-day clinical outcomes were collected. Five versions of the EsVan models were applied to the data with calculation of C-statistics for both overall BSI rate and high-risk organism BSI (gram-negative and Staphylococcus aureus BSI), as well as model calibration. RESULTS: In 2,565 evaluable episodes, the BSI rate was 4.7% (N = 120). Complications for the whole cohort were rare, with 1.1% (N = 27) needing intensive care unit (ICU) care by 7 days, and the all-cause mortality rate was 0.2% (N = 5), with only one potential infection-related death. C-statistics ranged from 0.775 to 0.789 for predicting overall BSI, with improved accuracy in predicting high-risk organism BSI (C-statistic 0.800-0.819). Initial empiric antibiotics were withheld in 14.9% of episodes, with no deaths or ICU admissions attributable to not receiving empiric antibiotics. CONCLUSION: The EsVan models, especially EsVan2b, perform very well prospectively across multiple academic medical centers and accurately stratify risk of BSI in episodes of non-neutropenic fever in pediatric patients with cancer. Implementation of routine screening with risk-stratified management for non-neutropenic fever in pediatric patients with cancer could safely reduce unnecessary antibiotic use.


Asunto(s)
Bacteriemia , Infecciones Bacterianas , Infecciones , Neoplasias , Sepsis , Humanos , Niño , Estudios Prospectivos , Bacteriemia/diagnóstico , Bacteriemia/epidemiología , Bacteriemia/microbiología , Fiebre/diagnóstico , Fiebre/etiología , Neoplasias/complicaciones , Sepsis/diagnóstico , Antibacterianos/uso terapéutico
5.
Transplant Cell Ther ; 30(1): 56-70, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37821078

RESUMEN

The approval of tisagenlecleucel (tisa-cel) for use in children with B cell acute lymphoblastic leukemia (B-ALL) was based on the phase 2 ELIANA trial, a global registration study. However, the ELIANA trial excluded specific subsets of patients facing unique challenges and did not include a sufficient number of patients to adequately evaluate outcomes in rare subpopulations. Since the commercialization of tisa-cel, data have become available that support therapeutic indications beyond the specific cohorts previously eligible for chimeric antigen receptor (CAR) T cells targeted to CD19 (CD19 CAR-T) therapy on the registration clinical trial. Substantial real-world data and aggregate clinical trial data have addressed gaps in our understanding of response rates, longer-term efficacy, and toxicities associated with CD19 CAR-T in special populations and rare clinical scenarios. These include patients with central nervous system relapsed disease, who were excluded from ELIANA and other early CAR-T trials owing to concerns about risk of neurotoxicity that have not been born out. There is also interest in the use of CD19 CAR-T for very-high-risk patients earlier in the course of therapy, such as patients with persistent minimal residual disease after 2 cycles of upfront chemotherapy and patients with first relapse of B-ALL. However, these indications are not specified on the label for tisa-cel and historically were not included in eligibility criteria for most clinical trials; data addressing these populations are needed. Populations at high risk of relapse, including patients with high-risk cytogenetic lesions, infants with B-ALL, patients with trisomy 21, and young adults with B-ALL, also may benefit from earlier treatment with CD19 CAR-T. It is important to prospectively study patient-reported outcomes given the differential toxicity expected between CD19 CAR-T and the historic standard of care, hematopoietic cell transplantation. Now that CD19 CAR-T therapy is commercially available, studies evaluating potential access disparities created by this very expensive novel therapy are increasingly pressing.


Asunto(s)
Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Receptores Quiméricos de Antígenos , Niño , Lactante , Adulto Joven , Humanos , Inmunoterapia Adoptiva/efectos adversos , Receptores Quiméricos de Antígenos/uso terapéutico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Linfoma de Burkitt/etiología , Recurrencia
7.
Transplant Cell Ther ; 29(10): 598-607, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37481241

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy (CAR-T) targeting the CD19 antigen on B cell acute lymphoblastic leukemia (B-ALL) has transitioned from a highly investigational therapy with limited access to a commercial therapy with established toxicities, response and survival rates, and access in numerous countries. With more than a decade of clinical study and 5 years of commercial access, data showing associations with success and failure have emerged. To address functional limitations of CAR-T and overcome constrained sample sizes when studying single-trial or single-center data, collaborative groups, including the Pediatric Real World CAR Consortium, the CAR-Multicenter Analysis, the Center for International Blood and Marrow Transplant Research, and the International BFM Study Group, among others, have been retrospectively interrogating the amassed clinical experience. The high patient numbers and varied clinical experiences compiled by these groups have defined clinical variables impacting CAR-T outcomes. Here we review published CAR-T trials and consortium/collaborative outcomes to establish variables associated with optimal response to CAR-T in children and young adults with B-ALL. We focus on findings with clinical relevance that have emerged, including data implicating pretreatment disease burden, presence of extramedullary disease, nonresponse to prior CD19 antigen targeting (blinatumomab therapy), CAR T cell dose, and fludarabine pharmacokinetics as factors impacting post-CAR-T survival. Additionally, we address the role of collaborative efforts going forward in guiding clinical practice evolution and further optimizing post-CAR-T outcomes.


Asunto(s)
Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores Quiméricos de Antígenos , Humanos , Niño , Adulto Joven , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/uso terapéutico , Antígenos CD19 , Estudios Retrospectivos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Linfoma de Burkitt/tratamiento farmacológico , Linfocitos T , Estudios Multicéntricos como Asunto
9.
Blood Adv ; 7(4): 575-585, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35482927

RESUMEN

Relapse following chimeric antigen receptor (CAR) T-cell therapy directed against CD19 for relapsed/refractory B-acute lymphoblastic leukemia (r/r B-ALL) remains a significant challenge. Three main patterns of relapse predominate: CD19 positive (CD19pos) relapse, CD19 negative (CD19neg) relapse, and lineage switch (LS). Development and validation of risk factors that predict relapse phenotype could help define potential pre- or post-CAR T-cell infusion interventions aimed at decreasing relapse. Our group sought to extensively characterize preinfusion risk factors associated with the development of each relapse pattern via a multicenter, retrospective review of children and young adults with r/r B-ALL treated with a murine-based CD19-CAR construct. Of 420 patients treated with CAR, 166 (39.5%) relapsed, including 83 (50%) CD19pos, 68 (41%) CD19neg, and 12 (7.2%) LS relapses. A greater cumulative number of prior complete remissions was associated with CD19pos relapses, whereas high preinfusion disease burden, prior blinatumomab nonresponse, older age, and 4-1BB CAR construct were associated with CD19neg relapses. The presence of a KMT2A rearrangement was the only preinfusion risk factor associated with LS. The median overall survival following a post-CAR relapse was 11.9 months (95% CI, 9-17) and was particularly dismal in patients experiencing an LS, with no long-term survivors following this pattern of relapse. Given the poor outcomes for those with post-CAR relapse, study of relapse prevention strategies, such as consolidative hematopoietic stem cell transplantation, is critical and warrants further investigation on prospective clinical trials.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Linfoma de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animales , Ratones , Antígenos CD19 , Inmunoterapia Adoptiva , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Estudios Prospectivos , Recurrencia , Linfocitos T
10.
Blood ; 141(11): 1251-1264, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36416729

RESUMEN

By overcoming chemotherapeutic resistance, chimeric antigen receptor (CAR) T cells facilitate deep, complete remissions and offer the potential for long-term cure in a substantial fraction of patients with chemotherapy refractory disease. However, that success is tempered with 10% to 30% of patients not achieving remission and over half of patients treated eventually experiencing relapse. With over a decade of experience using CAR T cells in children, adolescents, and young adults (AYA) to treat relapsed/refractory B-cell acute lymphoblastic leukemia (B-ALL) and 5 years since the first US Food and Drug Administration approval, data defining the nuances of patient-specific risk factors are emerging. With the commercial availability of 2 unique CD19 CAR T-cell constructs for B-ALL, in this article, we review the current literature, outline our approach to patients, and discuss how individual factors inform strategies to optimize outcomes in children and AYA receiving CD19 CAR T cells. We include data from both prospective and recent large retrospective studies that offer insight into understanding when the risks of CAR T-cell therapy failure are high and offer perspectives suggesting when consolidative hematopoietic cell transplantation or experimental CAR T-cell and/or alternative immunotherapy should be considered. We also propose areas where prospective trials addressing the optimal use of CAR T-cell therapy are needed.


Asunto(s)
Receptores Quiméricos de Antígenos , Adolescente , Adulto Joven , Humanos , Niño , Estudios Prospectivos , Estudios Retrospectivos , Inmunoterapia Adoptiva/efectos adversos , Linfocitos T , Antígenos CD19 , Factores de Riesgo
11.
Pediatr Blood Cancer ; 70(1): e30062, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36370087

RESUMEN

BACKGROUND: An adequate absolute lymphocyte count (ALC) is an essential first step in autologous chimeric antigen receptor (CAR) T-cell manufacturing. For patients with acute myelogenous leukemia (AML), the intensity of chemotherapy received may affect adequate ALC recovery required for CAR T-cell production. We sought to analyze ALC following each course of upfront therapy as one metric for CAR T-cell manufacturing feasibility in children and young adults with AML. PROCEDURE: ALC data were collected from an observational study of patients with newly diagnosed AML between the ages of 1 month and 21 years who received treatment between the years of 2006 and 2018 at one of three hospitals in the Leukemia Electronic Abstraction of Records Network (LEARN) consortium. RESULTS: Among 193 patients with sufficient ALC data for analysis, the median ALC following induction 1 was 1715 cells/µl (interquartile range: 1166-2388), with successive decreases in ALC with each subsequent course. Similarly, the proportion of patients achieving an ALC >400 cells/µl decreased following each course, ranging from 98.4% (190/193) after course 1 to 66.7% (22/33) for patients who received a fifth course of therapy. CONCLUSIONS: There is a successive decline of ALC recovery with subsequent courses of chemotherapy. Despite this decline, ALC values are likely sufficient to consider apheresis prior to the initiation of each course of upfront therapy for the majority of newly diagnosed pediatric AML patients, thereby providing a window of opportunity for T-cell collection for those patients identified at high risk of relapse or with refractory disease.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Receptores Quiméricos de Antígenos , Niño , Adulto Joven , Humanos , Lactante , Pronóstico , Leucemia Mieloide Aguda/tratamiento farmacológico , Recuento de Linfocitos , Inmunoterapia Adoptiva , Estudios Retrospectivos
12.
Blood ; 141(6): 609-619, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36351239

RESUMEN

Children living in poverty experience excessive relapse and death from newly diagnosed acute lymphoblastic leukemia (ALL). The influence of household poverty and neighborhood social determinants on outcomes from chimeric antigen receptor (CAR) T-cell therapy for relapsed/refractory (r/r) leukemia is poorly described. We identified patients with r/r CD19+ ALL/lymphoblastic lymphoma treated on CD19-directed CAR T-cell clinical trials or with commercial tisagenlecleucel from 2012 to 2020. Socioeconomic status (SES) was proxied at the household level, with poverty exposure defined as Medicaid-only insurance. Low-neighborhood opportunity was defined by the Childhood Opportunity Index. Among 206 patients aged 1 to 29, 35.9% were exposed to household poverty, and 24.9% had low-neighborhood opportunity. Patients unexposed to household poverty or low-opportunity neighborhoods were more likely to receive CAR T-cell therapy with a high disease burden (>25%), a disease characteristic associated with inferior outcomes, as compared with less advantaged patients (38% vs 30%; 37% vs 26%). Complete remission (CR) rate was 93%, with no significant differences by household poverty (P = .334) or neighborhood opportunity (P = .504). In multivariate analysis, patients from low-opportunity neighborhoods experienced an increased hazard of relapse as compared with others (P = .006; adjusted hazard ratio [HR], 2.3; 95% confidence interval [CI], 1.3-4.1). There was no difference in hazard of death (P = .545; adjusted HR, 1.2; 95% CI, 0.6-2.4). Among children who successfully receive CAR T-cell therapy, CR and overall survival are equitable regardless of proxied SES and neighborhood opportunity. Children from more advantaged households and neighborhoods receive CAR T-cell therapy with a higher disease burden. Investigation of multicenter outcomes and access disparities outside of clinical trial settings is warranted.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores Quiméricos de Antígenos , Humanos , Niño , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos/uso terapéutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Recurrencia , Antígenos CD19 , Pobreza
13.
Hematol Oncol Clin North Am ; 36(4): 701-727, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35780062

RESUMEN

Chimeric antigen receptor T-cell (CART) therapy has transformed the treatment paradigm for pediatric patients with relapsed/refractory B-cell acute lymphoblastic leukemia (B-ALL), with complete remission rates in key pivotal CD19-CART trials ranging from 65% to 90%. Alongside this new therapy, new toxicity profiles and treatment limitations have emerged, necessitating toxicity consensus grading systems, cooperative group trials, and novel management approaches. This review highlights the results of key clinical trials of CART for pediatric hematologic malignancies, discusses the most common toxicities seen to date, and elucidates challenges, opportunities, and areas of active research to optimize this therapy.


Asunto(s)
Neoplasias Hematológicas , Receptores Quiméricos de Antígenos , Antígenos CD19 , Tratamiento Basado en Trasplante de Células y Tejidos , Niño , Neoplasias Hematológicas/etiología , Neoplasias Hematológicas/terapia , Humanos , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/uso terapéutico , Receptores Quiméricos de Antígenos/uso terapéutico
15.
Clin Cancer Res ; 28(18): 3940-3949, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35838646

RESUMEN

Chimeric antigen receptor T-cell (CAR-T) therapy is an exciting development in the field of cancer immunology and has received a lot of interest in recent years. Many time-to-event (TTE) endpoints related to relapse, disease progression, and remission are analyzed in CAR-T studies to assess treatment efficacy. Definitions of these TTE endpoints are not always consistent, even for the same outcomes (e.g., progression-free survival), which often stems from analysis choices regarding which events to consider as part of the composite endpoint, censoring or competing risk in the analysis. Subsequent therapies such as hematopoietic stem cell transplantation are common but are not treated the same in different studies. Standard survival analysis methods are commonly applied to TTE analyses but often without full consideration of the assumptions inherent in the chosen analysis. We highlight two important issues of TTE analysis that arise in CAR-T studies, as well as in other settings in oncology: the handling of competing risks and assessing the association between a time-varying (post-infusion) exposure and the TTE outcome. We review existing analytical methods, including the cumulative incidence function and regression models for analysis of competing risks, and landmark and time-varying covariate analysis for analysis of post-infusion exposures. We clarify the scientific questions that the different analytical approaches address and illustrate how the application of an inappropriate method could lead to different results using data from multiple published CAR-T studies. Codes for implementing these methods in standard statistical software are provided.


Asunto(s)
Inmunoterapia Adoptiva , Neoplasias , Receptores Quiméricos de Antígenos , Ensayos Clínicos como Asunto , Trasplante de Células Madre Hematopoyéticas , Humanos , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Neoplasias/terapia , Linfocitos T
16.
Sci Adv ; 8(23): eabj2820, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35675405

RESUMEN

A notable number of acute lymphoblastic leukemia (ALL) patients develop CD19-positive relapse within 1 year after receiving chimeric antigen receptor (CAR) T cell therapy. It remains unclear if the long-term response is associated with the characteristics of CAR T cells in infusion products, hindering the identification of biomarkers to predict therapeutic outcomes. Here, we present 101,326 single-cell transcriptomes and surface protein landscape from the infusion products of 12 ALL patients. We observed substantial heterogeneity in the antigen-specific activation states, among which a deficiency of T helper 2 function was associated with CD19-positive relapse compared with durable responders (remission, >54 months). Proteomic data revealed that the frequency of early memory T cells, rather than activation or coinhibitory signatures, could distinguish the relapse. These findings were corroborated by independent functional profiling of 49 patients, and an integrative model was developed to predict the response. Our data unveil the molecular mechanisms that may inform strategies to boost specific T cell function to maintain long-term remission.


Asunto(s)
Inmunoterapia Adoptiva , Leucemia-Linfoma Linfoblástico de Células Precursoras , Antígenos CD19 , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Proteómica , Receptores Quiméricos de Antígenos/metabolismo , Recurrencia
17.
Clin Cancer Res ; 28(17): 3804-3813, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35705524

RESUMEN

PURPOSE: To study the biology and identify markers of severe cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) in children after chimeric antigen receptor T-cell (CAR T) treatment. EXPERIMENTAL DESIGN: We used comprehensive proteomic profiling to measure over 1,400 serum proteins at multiple serial timepoints in a cohort of patients with B-cell acute lymphoblastic leukemia treated with the CD19-targeted CAR T CTL019 on two clinical trials. RESULTS: We identified fms-like tyrosine kinase 3 (FLT3) and mast cell immunoglobulin-like receptor 1 (MILR1) as preinfusion predictive biomarkers of severe CRS. We demonstrated that CRS is an IFNγ-driven process with a protein signature overlapping with hemophagocytic lymphohistiocytosis (HLH). We identified IL18 as a potentially targetable cytokine associated with the development of ICANS. CONCLUSIONS: We identified preinfusion biomarkers that can be used to predict severe CRS with a sensitivity, specificity, and accuracy superior to the current gold standard of disease burden. We demonstrated the fundamental role of the IFNγ pathway in driving CRS, suggesting CRS and carHLH are overlapping rather than distinct phenomena, an observation with important treatment implications. We identified IL18 as a possible targetable cytokine in ICANS, providing rationale for IL18 blocking therapies to be translated into clinical trials in ICANS.


Asunto(s)
Síndromes de Neurotoxicidad , Receptores Quiméricos de Antígenos , Biomarcadores , Niño , Síndrome de Liberación de Citoquinas/etiología , Citocinas/metabolismo , Humanos , Inmunoterapia Adoptiva , Interleucina-18 , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/etiología , Proteoma , Proteómica
18.
J Clin Oncol ; 40(9): 932-944, 2022 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-34767461

RESUMEN

PURPOSE: CD19-targeted chimeric antigen receptor T cells (CD19-CAR) and blinatumomab effectively induce remission in relapsed or refractory B-cell acute lymphoblastic leukemia (ALL) but are also associated with CD19 antigen modulation. There are limited data regarding the impact of prior blinatumomab exposure on subsequent CD19-CAR outcomes. PATIENTS AND METHODS: We conducted a multicenter, retrospective review of children and young adults with relapsed or refractory ALL who received CD19-CAR between 2012 and 2019. Primary objectives addressed 6-month relapse-free survival (RFS) and event-free survival (EFS), stratified by blinatumomab use. Secondary objectives included comparison of longer-term survival outcomes, complete remission rates, CD19 modulation, and identification of factors associated with EFS. RESULTS: Of 420 patients (median age, 12.7 years; interquartile range, 7.1-17.5) treated with commercial tisagenlecleucel or one of three investigational CD19-CAR constructs, 77 (18.3%) received prior blinatumomab. Blinatumomab-exposed patients more frequently harbored KMT2A rearrangements and underwent a prior stem-cell transplant than blinatumomab-naïve patients. Among patients evaluable for CD19-CAR response (n = 412), blinatumomab nonresponders had lower complete remission rates to CD19-CAR (20 of 31, 64.5%) than blinatumomab responders (39 of 42, 92.9%) or blinatumomab-naive patients (317 of 339, 93.5%), P < .0001. Following CD19-CAR, blinatumomab nonresponders had worse 6-month EFS (27.3%; 95% CI, 13.6 to 43.0) compared with blinatumomab responders (66.9%; 95% CI, 50.6 to 78.9; P < .0001) or blinatumomab-naïve patients (72.6%; 95% CI, 67.5 to 77; P < .0001) and worse RFS. High-disease burden independently associated with inferior EFS. CD19-dim or partial expression (preinfusion) was more frequently seen in blinatumomab-exposed patients (13.3% v 6.5%; P = .06) and associated with lower EFS and RFS. CONCLUSION: With the largest series to date in pediatric CD19-CAR, and, to our knowledge, the first to study the impact of sequential CD19 targeting, we demonstrate that blinatumomab nonresponse and high-disease burden were independently associated with worse RFS and EFS, identifying important indicators of long-term outcomes following CD19-CAR.


Asunto(s)
Anticuerpos Biespecíficos , Linfoma de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Enfermedad Aguda , Anticuerpos Biespecíficos/efectos adversos , Antígenos CD19 , Niño , Costo de Enfermedad , Humanos , Inmunoterapia Adoptiva/efectos adversos , Linfoma de Células B/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Recurrencia , Adulto Joven
19.
Blood ; 139(14): 2173-2185, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-34871373

RESUMEN

Chimeric antigen receptor (CAR) T-cell therapy can induce durable remissions of relapsed/refractory B-acute lymphoblastic leukemia (ALL). However, case reports suggested differential outcomes mediated by leukemia cytogenetics. We identified children and young adults with relapsed/refractory CD19+ ALL/lymphoblastic lymphoma treated on 5 CD19-directed CAR T-cell (CTL019 or humanized CART19) clinical trials or with commercial tisagenlecleucel from April 2012 to April 2019. Patients were hierarchically categorized according to leukemia cytogenetics: High-risk lesions were defined as KMT2A (MLL) rearrangements, Philadelphia chromosome (Ph+), Ph-like, hypodiploidy, or TCF3/HLF; favorable as hyperdiploidy or ETV6/RUNX1; and intermediate as iAMP21, IKZF1 deletion, or TCF3/PBX1. Of 231 patients aged 1 to 29, 74 (32%) were categorized as high risk, 28 (12%) as intermediate, 43 (19%) as favorable, and 86 (37%) as uninformative. Overall complete remission rate was 94%, with no difference between strata. There was no difference in relapse-free survival (RFS; P = .8112), with 2-year RFS for the high-risk group of 63% (95% confidence interval [CI], 52-77). There was similarly no difference seen in overall survival (OS) (P = .5488), with 2-year OS for the high-risk group of 70% (95% CI, 60-82). For patients with KMT2A-rearranged infant ALL (n = 13), 2-year RFS was 67% (95% CI, 45-99), and OS was 62% (95% CI, 40-95), with multivariable analysis demonstrating no increased risk of relapse (hazard ratio, 0.70; 95% CI, 0.21-2.90; P = .7040) but a higher proportion of relapses associated with myeloid lineage switch and a 3.6-fold increased risk of all-cause death (95% CI, 1.04-12.75; P = .0434). CTL019/huCART19/tisagenlecleucel are effective at achieving durable remissions across cytogenetic categories. Relapsed/refractory patients with high-risk cytogenetics, including KMT2A-rearranged infant ALL, demonstrated high RFS and OS probabilities at 2 years.


Asunto(s)
Inmunoterapia Adoptiva , Leucemia-Linfoma Linfoblástico de Células Precursoras , Antígenos CD19 , Niño , Análisis Citogenético , Humanos , Lactante , Cromosoma Filadelfia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos de Linfocitos T/uso terapéutico , Recurrencia , Adulto Joven
20.
Lancet Haematol ; 8(10): e711-e722, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34560014

RESUMEN

BACKGROUND: CNS relapse of acute lymphocytic leukaemia is difficult to treat. Durable remissions of relapsed or refractory B-cell acute lymphocytic leukaemia have been observed following treatment with CD19-directed chimeric antigen receptor (CAR) T cells; however, most trials have excluded patients with active CNS disease. We aimed to assess the safety and activity of CAR T-cell therapy in patients with a history of CNS relapsed or refractory B-cell acute lymphocytic leukaemia. METHODS: In this post-hoc analysis, we included 195 patients (aged 1-29 years; 110 [56%] male and 85 [44%] female) with relapsed or refractory CD19-positive acute lymphocytic leukaemia or lymphocytic lymphoma from five clinical trials (Pedi CART19, 13BT022, ENSIGN, ELIANA, and 16CT022) done at the Children's Hospital of Philadelphia (Philadelphia, PA, USA), in which participants received CD19-directed CAR T-cell therapy between April 17, 2012, and April 16, 2019. The trials required control of CNS disease at enrolment and infusion and excluded treatment in the setting of acute neurological toxic effects (>grade 1 in severity) or parenchymal lesions deemed to increase the risk of neurotoxicity. 154 patients from Pedi CART19, ELIANA, ENSIGN, and 16CT022 received tisagenlecleucel and 41 patients from the 13BT022 trial received the humanised CD19-directed CAR, huCART19. We categorised patients into two strata on the basis of CNS status at relapse or within the 12 months preceding CAR T-cell infusion-either CNS-positive or CNS-negative disease. Patients with CNS-positive disease were further divided on the basis of morphological bone marrow involvement-either combined bone marrow and CNS involvement, or isolated CNS involvement. Endpoints were the proportion of patients with complete response at 28 days after infusion, Kaplan-Meier analysis of relapse-free survival and overall survival, and the incidence of cytokine release syndrome and neurotoxicity. FINDINGS: Of all 195 patients, 66 (34%) were categorised as having CNS-positive disease and 129 (66%) as having CNS-negative disease, and 43 (22%) were categorised as having isolated CNS involvement. The median length of follow-up was 39 months (IQR 25-49) in the CNS-positive stratum and 36 months (18-49) in the CNS-negative stratum. The proportion of patients in the CNS-positive stratum with a complete response at 28 days after infusion was similar to that in the CNS-negative stratum (64 [97%] of 66 vs 121 [94%] of 129; p=0·74), with no significant difference in relapse-free survival (60% [95% CI 49-74] vs 60% [51-71]; p=0·50) or overall survival (83% [75-93] vs 71% [64-79]; p=0·39) at 2 years between the two groups. Overall survival at 2 years was significantly higher in patients with isolated CNS involvement compared with those with bone marrow involvement (91% [82-100] vs 71% [64-78]; p=0·046). The incidence and severity of neurotoxicity (any grade, 53 [41%] vs 38 [58%]; grade 1, 24 [19%] vs 20 [30%]; grade 2, 14 [11%] vs 10 [15%]; grade 3, 12 [9%] vs 6 [9%], and grade 4, 3 [2%] vs 2 [3%]; p=0·20) and cytokine release syndrome (any grade, 110 [85%] vs 53 [80%]; grade 1, 12 [9%] vs 2 [3%]; grade 2, 61 [47%] vs 38 [58%]; grade 3, 18 [14%] vs 7 [11%] and grade 4, 19 [15%] vs 6 [9%]; p=0·26) did not differ between the CNS-negative and the CNS-positive disease strata. INTERPRETATION: Tisagenlecleucel and huCART19 are active at clearing CNS disease and maintaining durable remissions in children and young adults with CNS relapsed or refractory B-cell acute lymphocytic leukaemia or lymphocytic lymphoma, without increasing the risk of severe neurotoxicity; although care should be taken in the timing of therapy and disease control to mitigate this risk. These preliminary findings support the use of these CAR T-cell therapies for patients with CNS relapsed or refractory B-cell acute lymphocytic leukaemia. FUNDING: Children's Hospital of Philadelphia Frontier Program.


Asunto(s)
Antígenos CD19/inmunología , Neoplasias del Sistema Nervioso Central/terapia , Inmunoterapia Adoptiva , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Adolescente , Adulto , Neoplasias del Sistema Nervioso Central/inmunología , Preescolar , Femenino , Humanos , Lactante , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Receptores Quiméricos de Antígenos/inmunología , Recurrencia , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA