Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Appl Microbiol ; 134(4)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37055370

RESUMEN

AIMS: Streptococcus mutans is highly sensitive to inhibitors of proton-pumping F-type ATPase (F-ATPase) under acidic conditions. Herein, we investigated the role of S. mutans F-ATPase in acid tolerance using a bacterium expressing the F-ATPase ß subunit at lower levels than the wild-type strain. METHODS AND RESULTS: We generated a mutant S. mutans expressing the catalytic ß subunit of F-ATPase at lower levels than the wild-type bacterium. The mutant cells exhibited a significantly slower growth rate at pH 5.30, whereas the rate was essentially the same as that of wild-type cells at pH 7.40. In addition, the colony-forming ability of the mutant was decreased at pH <4.30 but not at pH 7.40. Thus, the growth rate and survival of S. mutans expressing low levels of the ß subunit were reduced under acidic conditions. CONCLUSIONS: Together with our previous observations, this study indicates that F-ATPase is involved in the acid tolerance mechanism of S. mutans by secreting protons from the cytoplasm.


Asunto(s)
Adenosina Trifosfatasas , Bombas de Protones , Adenosina Trifosfatasas/genética , Bombas de Protones/genética , Protones , Streptococcus mutans , Concentración de Iones de Hidrógeno
2.
Biol Pharm Bull ; 45(10): 1426-1431, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36184499

RESUMEN

Vacuolar-type ATPase (V-ATPase) shares its structure and rotational catalysis with F-type ATPase (F-ATPase, ATP synthase). However, unlike subunits of F-ATPase, those of V-ATPase have tissue- and/or organelle-specific isoforms. Structural diversity of V-ATPase generated by different combinations of subunit isoforms enables it to play diverse physiological roles in mammalian cells. Among these various roles, this review focuses on the functions of lysosome-specific V-ATPase in bone resorption by osteoclasts. Lysosomes remain in the cytoplasm in most cell types, but in osteoclasts, secretory lysosomes move toward and fuse with the plasma membrane to secrete lysosomal enzymes, which is essential for bone resorption. Through this process, lysosomal V-ATPase harboring the a3 isoform of the a subunit is relocated to the plasma membrane, where it transports protons from the cytosol to the cell exterior to generate the acidic extracellular conditions required for secreted lysosomal enzymes. In addition to this role as a proton pump, we recently found that the lysosomal a3 subunit of V-ATPase is essential for anterograde trafficking of secretory lysosomes. Specifically, a3 interacts with Rab7, a member of the Rab guanosine 5'-triphosphatase (GTPase) family that regulates organelle trafficking, and recruits it to the lysosomal membrane. These findings revealed the multifunctionality of lysosomal V-ATPase in osteoclasts; V-ATPase is responsible not only for the formation of the acidic environment by transporting protons, but also for intracellular trafficking of secretory lysosomes by recruiting organelle trafficking factors. Herein, we summarize the molecular mechanism underlying secretory lysosome trafficking in osteoclasts, and discuss the possible regulatory role of V-ATPase in organelle trafficking.


Asunto(s)
Resorción Ósea , ATPasas de Translocación de Protón Vacuolares , Adenosina Trifosfato/metabolismo , Animales , Resorción Ósea/metabolismo , GTP Fosfohidrolasas/metabolismo , Guanosina/metabolismo , Humanos , Lisosomas/metabolismo , Mamíferos/metabolismo , Osteoclastos/metabolismo , Isoformas de Proteínas/metabolismo , Protones , ATPasas de Translocación de Protón Vacuolares/metabolismo
3.
Sci Rep ; 12(1): 6522, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35444208

RESUMEN

Accumulation of senescent cells in various tissues has been reported to have a pathological role in age-associated diseases. Elimination of senescent cells (senolysis) was recently reported to reversibly improve pathological aging phenotypes without increasing rates of cancer. We previously identified glycoprotein nonmetastatic melanoma protein B (GPNMB) as a seno-antigen specifically expressed by senescent human vascular endothelial cells and demonstrated that vaccination against Gpnmb eliminated Gpnmb-positive senescent cells, leading to an improvement of age-associated pathologies in mice. The aim of this study was to elucidate whether GPNMB plays a role in senescent cells. We examined the potential role of GPNMB in senescent cells by testing the effects of GPNMB depletion and overexpression in vitro and in vivo. Depletion of GPNMB from human vascular endothelial cells shortened their replicative lifespan and increased the expression of negative cell cycle regulators. Conversely, GPNMB overexpression protected these cells against stress-induced premature senescence. Depletion of Gpnmb led to impairment of vascular function and enhanced atherogenesis in mice, whereas overexpression attenuated dietary vascular dysfunction and atherogenesis. GPNMB was upregulated by lysosomal stress associated with cellular senescence and was a crucial protective factor in maintaining lysosomal integrity. GPNMB is a seno-antigen that acts as a survival factor in senescent cells, suggesting that targeting seno-antigens such as GPNMB may be a novel strategy for senolytic treatments.


Asunto(s)
Aterosclerosis , Proteínas del Ojo/metabolismo , Melanoma , Glicoproteínas de Membrana/metabolismo , Animales , Senescencia Celular , Células Endoteliales/metabolismo , Longevidad , Lisosomas/metabolismo , Melanoma/metabolismo , Glicoproteínas de Membrana/genética , Ratones , Receptores Fc
4.
Nat Aging ; 1(12): 1117-1126, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-37117524

RESUMEN

Elimination of senescent cells (senolysis) was recently reported to improve normal and pathological changes associated with aging in mice1,2. However, most senolytic agents inhibit antiapoptotic pathways3, raising the possibility of off-target effects in normal tissues. Identification of alternative senolytic approaches is therefore warranted. Here we identify glycoprotein nonmetastatic melanoma protein B (GPNMB) as a molecular target for senolytic therapy. Analysis of transcriptome data from senescent vascular endothelial cells revealed that GPNMB was a molecule with a transmembrane domain that was enriched in senescent cells (seno-antigen). GPNMB expression was upregulated in vascular endothelial cells and/or leukocytes of patients and mice with atherosclerosis. Genetic ablation of Gpnmb-positive cells attenuated senescence in adipose tissue and improved systemic metabolic abnormalities in mice fed a high-fat diet, and reduced atherosclerotic burden in apolipoprotein E knockout mice on a high-fat diet. We then immunized mice against Gpnmb and found a reduction in Gpnmb-positive cells. Senolytic vaccination also improved normal and pathological phenotypes associated with aging, and extended the male lifespan of progeroid mice. Our results suggest that vaccination targeting seno-antigens could be a potential strategy for new senolytic therapies.


Asunto(s)
Senescencia Celular , Longevidad , Ratones , Animales , Masculino , Senoterapéuticos , Células Endoteliales , Ratones Noqueados , Fenotipo
5.
Exp Cell Res ; 389(2): 111901, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32045577

RESUMEN

The a3 isoform of vacuolar-type proton-pumping ATPase (V-ATPase) is essential for bone resorption by osteoclasts. Although more than 90 mutations of the human a3 gene have been identified in patients with infantile malignant osteopetrosis, it is unclear whether they lead to osteoclast dysfunction. We have established an in vitro assay to induce osteoclasts from spleen macrophages derived from a3-knockout mice. Here, we examined the effects of these mutations in a3-knockout osteoclasts. We were interested in four mutations, two short deletions and two missense mutations, previously identified in the a3 cytosolic domain. a3 harboring either of the two short deletions was hardly expressed in osteoclasts and calcium phosphate resorption was impaired. On the other hand, osteoclasts expressing a3 with either of the two missense mutations exhibited no defects. Specifically, expression levels of the mutant proteins, V-ATPase assembly, and calcium phosphate resorption activity were similar to those of the wild type. Moreover, these missense mutants interacted with Rab7, a small GTPase that regulates lysosomal trafficking. These results suggest that the short deletions impair a3 expression and thus disrupt V-ATPase subunit assembly essential for bone resorption, while the missense mutations do not cause osteoclast dysfunction without an additional mutation(s) or impair resorption of bone, but not of calcium phosphate.


Asunto(s)
Resorción Ósea , Citoplasma/metabolismo , Lisosomas/patología , Mutación Missense , Osteoclastos/patología , Osteopetrosis/patología , ATPasas de Translocación de Protón Vacuolares/genética , Secuencia de Aminoácidos , Animales , Diferenciación Celular , Humanos , Lisosomas/metabolismo , Ratones , Ratones Noqueados , Osteoclastos/metabolismo , Osteopetrosis/genética , Homología de Secuencia , ATPasas de Translocación de Protón Vacuolares/fisiología
6.
Arch Biochem Biophys ; 666: 46-51, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30930283

RESUMEN

Streptococcus mutans, a bacterium mainly inhabiting the tooth surface, is a major pathogen of dental caries. The bacterium metabolizes sugars to produce acids, resulting in an acidic microenvironment in the dental plaque. Hence, S. mutans should possess a mechanism for surviving under acidic conditions. In the current study, we report the effects of inhibitors of Escherichia coli proton-pumping F-type ATPase (F-ATPase) on the activity of S. mutans enzyme, and the growth and survival of S. mutans under acidic conditions. Piceatannol, curcumin, and demethoxycurcumin strongly reduced the ATPase activity of S. mutans F-ATPase. Interestingly, these compounds inhibited the growth of S. mutans at pH 5.3 but not at pH 7.3. They also significantly reduced the colony-forming ability of S. mutans after incubation at pH 4.3, while showing essentially no effect at pH 7.3. These observations indicate that S. mutans is highly sensitive to F-ATPase inhibitors under acidic conditions and that F-ATPase plays an important role in acid tolerance of this bacterium.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Concentración de Iones de Hidrógeno , Bombas de Protones/metabolismo , Streptococcus mutans/enzimología , Streptococcus mutans/crecimiento & desarrollo
7.
Biochem Biophys Res Commun ; 498(4): 837-841, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29530525

RESUMEN

Porphyromonas gingivalis is a well-known Gram-negative bacterium that causes periodontal disease. The bacterium metabolizes amino acids and peptides to obtain energy. An ion gradient across its plasma membrane is thought to be essential for nutrient import. However, it is unclear whether an ion-pumping ATPase responsible for the gradient is required for bacterial growth. Here, we report the inhibitory effect of protonophores and inhibitors of a proton-pumping ATPase on the growth of P. gingivalis. Among the compounds examined, curcumin and citreoviridin appreciably reduced the bacterial growth. Furthermore, these compounds inhibited the ATPase activity in the bacterial membrane, where the A-type proton-pumping ATPase (A-ATPase) is located. This study suggests that curcumin and citreoviridin inhibit the bacterial growth by inhibiting the A-ATPase in the P. gingivalis membrane.


Asunto(s)
Porphyromonas gingivalis/efectos de los fármacos , ATPasas de Translocación de Protón/antagonistas & inhibidores , Aurovertinas/farmacología , Proteínas Bacterianas , Membrana Celular/enzimología , Curcumina/farmacología , Enfermedades Periodontales/prevención & control , Porphyromonas gingivalis/enzimología , Porphyromonas gingivalis/crecimiento & desarrollo , Inhibidores de la Bomba de Protones/farmacología , Bombas de Protones/química
8.
Int J Biol Macromol ; 99: 615-621, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28246051

RESUMEN

The F1 sector of ATP synthase (FOF1) synthesizes or hydrolyses ATP via a rotational catalysis mechanism that couples chemical reaction with subunit rotation. Phytopolyphenols such as curcumin can inhibit bulk phase F1 ATPase activity by extending the catalytic dwell time during subunit rotation (Sekiya, M., Hisasaka, R., Iwamoto-Kihara, A., Futai, M., Nakanishi-Matsui, M., Biochem. Biophys. Res. Commun. 452 (2014) 940-944). Citreoviridin, a polyene α-pyrone mycotoxin isolated from Penicillium sp, also inhibits ATPase activity. Molecular docking and mutational analysis indicated that these compounds interact with a region near the ß-subunit Arg398 residue that lies at the interface with the α-subunit. Binding of these inhibitors lowered the rotation rate and increased the duration of the catalytic dwell synergistically with substitution of ß-subunit Ser174 to Phe (ßS174F), which rendered the enzyme defective for conformational transmission between ß-subunits of different catalytic stages. Furthermore, substitution of α-subunit Glu402 to Ala (αE402A) in the α/ß-interface also decreased the rotation rate by increasing the duration of the catalytic dwell. Interestingly, this mutation restored the catalytic dwell of the ßS174F variant to that of the wild-type enzyme. These results suggest that the α/ß-interface is involved in conformational changes of the ß-subunit during rotational catalysis.


Asunto(s)
Biocatálisis , Inhibidores Enzimáticos/farmacología , Mutación , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/metabolismo , Animales , Aurovertinas/metabolismo , Aurovertinas/farmacología , Sitios de Unión , Bovinos , Curcumina/metabolismo , Curcumina/farmacología , Sinergismo Farmacológico , Inhibidores Enzimáticos/metabolismo , Escherichia coli/enzimología , Hidrólisis , Simulación del Acoplamiento Molecular , Mutación/efectos de los fármacos , Conformación Proteica , ATPasas de Translocación de Protón/antagonistas & inhibidores , ATPasas de Translocación de Protón/genética , Rotación
9.
Biochim Biophys Acta ; 1857(2): 129-140, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26589785

RESUMEN

ATP synthases (FoF1) are found ubiquitously in energy-transducing membranes of bacteria, mitochondria, and chloroplasts. These enzymes couple proton transport and ATP synthesis or hydrolysis through subunit rotation, which has been studied mainly by observing single molecules. In this review, we discuss the mechanism of rotational catalysis of ATP synthases, mainly that from Escherichia coli, emphasizing the high-speed and stochastic rotation including variable rates and an inhibited state. Single molecule studies combined with structural information of the bovine mitochondrial enzyme and mutational analysis have been informative as to an understanding of the catalytic site and the interaction between rotor and stator subunits. We discuss the similarity and difference in structure and inhibitory regulation of F1 from bovine and E. coli. Unlike the crystal structure of bovine F1 (α3ß3γ), that of E. coli contains a ε subunit, which is a known inhibitor of bacterial and chloroplast F1 ATPases. The carboxyl terminal domain of E. coli ε (εCTD) interacts with the catalytic and rotor subunits (ß and γ, respectively), and then inhibits rotation. The effects of phytopolyphenols on F1-ATPase are also discussed: one of them, piceatannol, lowered the rotational speed by affecting rotor/stator interactions.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Polifenoles/química , Subunidades de Proteína/química , ATPasas de Translocación de Protón/antagonistas & inhibidores , ATPasas de Translocación de Protón/química , Animales , Biocatálisis , Dominio Catalítico , Bovinos , Escherichia coli/química , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/metabolismo , Hidrólisis , Modelos Moleculares , Polifenoles/farmacología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/metabolismo , Subunidades de Proteína/farmacología , ATPasas de Translocación de Protón/metabolismo , Rotación , Especificidad de la Especie , Termodinámica
10.
J Biol Chem ; 289(44): 30822-30831, 2014 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-25228697

RESUMEN

Escherichia coli ATP synthase (F0F1) couples catalysis and proton transport through subunit rotation. The ϵ subunit, an endogenous inhibitor, lowers F1-ATPase activity by decreasing the rotation speed and extending the duration of the inhibited state (Sekiya, M., Hosokawa, H., Nakanishi-Matsui, M., Al-Shawi, M. K., Nakamoto, R. K., and Futai, M. (2010) Single molecule behavior of inhibited and active states of Escherichia coli ATP synthase F1 rotation. J. Biol. Chem. 285, 42058-42067). In this study, we constructed a series of ϵ subunits truncated successively from the carboxyl-terminal domain (helix 1/loop 2/helix 2) and examined their effects on rotational catalysis (ATPase activity, average rotation rate, and duration of inhibited state). As expected, the ϵ subunit lacking helix 2 caused about ½-fold reduced inhibition, and that without loop 2/helix 2 or helix 1/loop 2/helix 2 showed a further reduced effect. Substitution of ϵSer(108) in loop 2 and ϵTyr(114) in helix 2, which possibly interact with the ß and γ subunits, respectively, decreased the inhibitory effect. These results suggest that the carboxyl-terminal domain of the ϵ subunit plays a pivotal role in the inhibition of F1 rotation through interaction with other subunits.


Asunto(s)
Proteínas de Escherichia coli/química , ATPasas de Translocación de Protón/química , Adenosina Trifosfato/química , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Biocatálisis , Proteínas de Escherichia coli/genética , Cinética , Modelos Moleculares , Estructura Cuaternaria de Proteína , Subunidades de Proteína , ATPasas de Translocación de Protón/genética , Eliminación de Secuencia
11.
Biochem Biophys Res Commun ; 452(4): 940-4, 2014 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-25230139

RESUMEN

ATP synthase (F-ATPase) function depends upon catalytic and rotation cycles of the F1 sector. Previously, we found that F1 ATPase activity is inhibited by the dietary polyphenols, curcumin, quercetin, and piceatannol, but that the inhibitory kinetics of curcumin differs from that of the other two polyphenols (Sekiya et al., 2012, 2014). In the present study, we analyzed Escherichia coli F1 ATPase rotational catalysis to identify differences in the inhibitory mechanism of curcumin versus quercetin and piceatannol. These compounds did not affect the 120° rotation step for ATP binding and ADP release, though they significantly increased the catalytic dwell duration for ATP hydrolysis. Analysis of wild-type F1 and a mutant lacking part of the piceatannol binding site (γΔ277-286) indicates that curcumin binds to F1 differently from piceatannol and quercetin. The unique inhibitory mechanism of curcumin is also suggested from its effect on F1 mutants with defective ß-γ subunit interactions (γMet23 to Lys) or ß conformational changes (ßSer174 to Phe). These results confirm that smooth interaction between each ß subunit and entire γ subunit in F1 is pertinent for rotational catalysis.


Asunto(s)
Curcumina/química , ATPasas de Translocación de Protón/antagonistas & inhibidores , ATPasas de Translocación de Protón/ultraestructura , Secuencia de Aminoácidos , Sitios de Unión , Activación Enzimática , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Especificidad por Sustrato
12.
Int J Biol Macromol ; 70: 241-5, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25010476

RESUMEN

Curcumin, a dietary phytopolyphenol isolated from a perennial herb (Curcuma longa), is a well-known compound effective for bacterial infections and tumors, and also as an antioxidant. In this study, we report the inhibitory effects of curcumin and its analogs on the Escherichia coli ATP synthase F1 sector. A structure-activity relationship study indicated the importance of 4'-hydroxy groups and a ß-diketone moiety for the inhibition. The 3'-demethoxy analog (DMC) inhibited F1 more strongly than curcumin did. Furthermore, these compounds inhibited E. coli growth through oxidative phosphorylation, consistent with their effects on ATPase activity. These results suggest that the two compounds affected bacterial growth through inhibition of ATP synthase. Derivatives including bis(arylmethylidene)acetones (C5 curcuminoids) exhibited only weak activity toward ATPase and bacterial growth.


Asunto(s)
ATPasas de Translocación de Protón Bacterianas/antagonistas & inhibidores , Curcumina/análogos & derivados , Curcumina/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , ATPasas de Translocación de Protón Bacterianas/química , ATPasas de Translocación de Protón Bacterianas/metabolismo , Curcumina/química , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Fosforilación Oxidativa/efectos de los fármacos , Relación Estructura-Actividad
13.
Biochem Biophys Res Commun ; 446(4): 889-93, 2014 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-24631905

RESUMEN

Intra-molecular rotation of FOF1 ATP synthase enables cooperative synthesis and hydrolysis of ATP. In this study, using a small gold bead probe, we observed fast rotation close to the real rate that would be exhibited without probes. Using this experimental system, we tested the rotation of FOF1 with the ε subunit connected to a globular protein [cytochrome b562 (ε-Cyt) or flavodoxin reductase (ε-FlavR)], which is apparently larger than the space between the central and the peripheral stalks. The enzymes containing ε-Cyt and ε-FlavR showed continual rotations with average rates of 185 and 148 rps, respectively, similar to the wild type (172 rps). However, the enzymes with ε-Cyt or ε-FlavR showed a reduced proton transport. These results indicate that the intra-molecular rotation is elastic but proton transport requires more strict subunit/subunit interaction.


Asunto(s)
Grupo Citocromo b/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fusión Génica , NADH NADPH Oxidorreductasas/metabolismo , ATPasas de Translocación de Protón/metabolismo , Fusión Artificial Génica , Grupo Citocromo b/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Modelos Moleculares , NADH NADPH Oxidorreductasas/genética , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/genética
14.
Biochim Biophys Acta ; 1837(6): 744-9, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24561225

RESUMEN

Osteoclasts acidify bone resorption lacunae through proton translocation by plasma membrane V-ATPase (vacuolar-type ATPase) which has an a3 isoform, one of the four isoforms of the trans-membrane a subunit (Toyomura et al., J. Biol. Chem., 278, 22023-22030, 2003). d2, a kidney- and epididymis-specific isoform of the d subunit, was also induced in osteoclast-like cells derived from the RAW264.7 line, and formed V-ATPase with a3. The amount of d2 in osteoclasts was 4-fold higher than that of d1, a ubiquitous isoform. These results indicate that V-ATPase with d2/a3 is a major osteoclast proton pump. Essentially the same results were obtained with osteoclasts derived from mouse spleen macrophages. Macrophages from a3-knock-out mice could differentiate into multi-nuclear cells with osteoclast-specific enzymes. In these cells, the d2 isoform was also induced and assembled in V-ATPase with the a1 or a2 isoform. However, they did not absorb calcium phosphate, indicating that V-ATPase with d2/a1 or d2/a2 could not perform the function of that with d2/a3.


Asunto(s)
Isoenzimas/metabolismo , Osteoclastos/metabolismo , Bombas de Protones/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Secuencia de Bases , Línea Celular , Cartilla de ADN , Isoenzimas/genética , Macrófagos/enzimología , Ratones , Ratones Noqueados , Osteoclastos/enzimología , Reacción en Cadena de la Polimerasa , Bazo/citología , Bazo/enzimología , ATPasas de Translocación de Protón Vacuolares/genética
15.
Biochem Biophys Res Commun ; 443(2): 677-82, 2014 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-24333424

RESUMEN

We have shown previously that the Streptococcus mutans F-type H(+)-ATPase (F(O)F(1)) c subunit gene could complement Escherichia coli defective in the corresponding gene, particularly at acidic pH (Araki et al., (2013) [14]). In this study, the entire S. mutans F(O)F(1) was functionally assembled in the E. coli plasma membrane (SF(O)F(1)). Membrane SF(O)F(1) ATPase showed optimum activity at pH 7, essentially the same as that of the S. mutans, although the activity of E. coli F(O)F(1) (EF(O)F(1)) was optimum at pH≥9. The membranes showed detectable ATP-dependent H(+)-translocation at pH 5.5-6.5, but not at neutral conditions (pH≥7), consistent with the role of S. mutans F(O)F(1) to pump H(+) out of the acidic cytoplasm. A hybrid F(O)F(1), consisting of membrane-integrated F(O) and -peripheral F(1) sectors from S. mutans and E. coli (SF(O)EF(1)), respectively, essentially showed the same pH profile as that of EF(O)F(1) ATPase. However, ATP-driven H(+)-transport was similar to that by SF(O)F(1), with activity at acidic pH. Replacement of the conserved c subunit Glu53 in SF(O)F(1) abolished H(+)-transport at pH 6 or 7, suggesting its role in H(+) transport. Mutations in the SF(O)F(1) c subunit, Ser17Ala or Glu20Ile, changed the pH dependency of H(+)-transport, and the F(O) could transport H(+) at pH 7, as the membranes with EF(O)F(1). Ser17, Glu20, and their vicinity were suggested to be involved in H(+)-transport in S. mutans at acidic pH.


Asunto(s)
Membrana Celular/química , Membrana Celular/enzimología , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/metabolismo , Streptococcus mutans/enzimología , Activación Enzimática , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Especificidad por Sustrato
16.
Biochem Biophys Res Commun ; 440(4): 611-6, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24113383

RESUMEN

A murine macrophage-derived line, RAW264.7, becomes multinuclear on stimulation with lipopolysaccharide (LPS), an outer membrane component of Gram-negative bacteria. These multinuclear cells internalized more polystyrene beads than mononuclear cells or osteoclasts (Nakanishi-Matsui, M., Yano, S., Matsumoto, N., and Futai, M., 2012). In this study, we analyzed the time courses of cell fusion in the presence of large beads. They were internalized into cells actively fusing to become multinuclear. However, the multinuclear cells once formed showed only low phagocytosis activity. These results suggest that formation of the multinuclear cells and bead internalization took place simultaneously. The formation of multinuclear cells was blocked by inhibitors for phosphoinositide 3-kinase, phospholipase C, calcineurin, and c-Jun N-terminal kinase. In addition, interleukin 6 and 10 also exhibited inhibitory effects. These signaling molecules and cytokines may play a crucial role in the LPS-induced multinuclear cell formation.


Asunto(s)
Fusión Celular , Núcleo Celular/ultraestructura , Lipopolisacáridos/inmunología , Poliestirenos/metabolismo , Animales , Inhibidores de la Calcineurina , Línea Celular , Interleucina-10/farmacología , Interleucina-6/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/administración & dosificación , Ratones , Microesferas , Fagocitosis , Fosfatidilinositol 3-Quinasas/administración & dosificación , Transducción de Señal , Factor de Necrosis Tumoral alfa/farmacología , Fosfolipasas de Tipo C/antagonistas & inhibidores
17.
IUBMB Life ; 65(3): 247-54, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23441040

RESUMEN

In this article, we discuss single molecule observation of rotational catalysis by E. coli ATP synthase (F-ATPase) using small gold beads. Studies involving a low viscous drag probe showed the stochastic properties of the enzyme in alternating catalytically active and inhibited states. The importance of subunit interaction between the rotor and the stator, and thermodynamics of the catalysis are also discussed. "Single Molecule Enzymology" is a new trend for understanding enzyme mechanisms in biochemistry and physiology.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Proteínas Motoras Moleculares/química , Subunidades de Proteína/química , ATPasas de Translocación de Protón/química , Protones , Adenosina Trifosfato/química , Biocatálisis , Dominio Catalítico , Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Oro/química , Hidrólisis , Simulación de Dinámica Molecular , Proteínas Motoras Moleculares/metabolismo , Conformación Proteica , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón/metabolismo , Rotación , Termodinámica
18.
Philos Trans R Soc Lond B Biol Sci ; 368(1611): 20120023, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23267177

RESUMEN

The rotary motor F(1)-ATPase from the thermophilic Bacillus PS3 (TF(1)) is one of the best-studied of all molecular machines. F(1)-ATPase is the part of the enzyme F(1)F(O)-ATP synthase that is responsible for generating most of the ATP in living cells. Single-molecule experiments have provided a detailed understanding of how ATP hydrolysis and synthesis are coupled to internal rotation within the motor. In this work, we present evidence that mesophilic F(1)-ATPase from Escherichia coli (EF(1)) is governed by the same mechanism as TF(1) under laboratory conditions. Using optical microscopy to measure rotation of a variety of marker particles attached to the γ-subunit of single surface-bound EF(1) molecules, we characterized the ATP-binding, catalytic and inhibited states of EF(1). We also show that the ATP-binding and catalytic states are separated by 35±3°. At room temperature, chemical processes occur faster in EF(1) than in TF(1), and we present a methodology to compensate for artefacts that occur when the enzymatic rates are comparable to the experimental temporal resolution. Furthermore, we show that the molecule-to-molecule variation observed at high ATP concentration in our single-molecule assays can be accounted for by variation in the orientation of the rotating markers.


Asunto(s)
ATPasas de Translocación de Protón Bacterianas/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Citoesqueleto de Actina/química , Adenosina Difosfato/química , Adenosina Trifosfato/biosíntesis , Adenosina Trifosfato/química , Sitios de Unión , Activación Enzimática , Pruebas de Enzimas , Hidrodinámica , Hidrólisis , Magnesio/química , Imagen Óptica/métodos , Unión Proteica , Conformación Proteica , Temperatura , Factores de Tiempo
19.
Biochem Biophys Res Commun ; 425(2): 144-9, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-22820190

RESUMEN

Lipopolysaccharide (LPS), an outer membrane component of Gram-negative bacteria, induces strong proinflammatory responses, including the release of cytokines and nitric oxide from macrophage. In this study, we found that a murine macrophage-derived line, RAW264.7, became multinuclear through cell-cell fusion after incubation with highly purified LPS or synthetic lipid A in the presence of Ca(2+). The same cell line is known to differentiate into multinuclear osteoclast, which expresses a specific proton pumping ATPase together with osteoclast markers on stimulation by the extracellular domain of receptor activator of nuclear factor κB ligand (Toyomura, T., Murata, Y., Yamamoto, A., Oka, T., Sun-Wada, G.-H., Wada, Y. and Futai, M., 2003). The LPS-induced multinuclear cells did not express osteoclast-specific enzymes including tartrate-resistant acid phosphatase and cathepsin K. During multinuclear cell formation, the cells internalized more and larger polystyrene beads (diameter 6-15 µm) than mononuclear cells and osteoclasts. The internalized beads were located in lysosome-marker positive organelles, which were probably phagolysosomes. The LPS-induced multinuclear cell could be a good model system to study phagocytosis of large foreign bodies.


Asunto(s)
Núcleo Celular/inmunología , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Fagocitosis/efectos de los fármacos , Fagosomas/inmunología , Animales , Calcio/farmacología , Fusión Celular , Línea Celular , Escherichia coli/inmunología , Lípido A/inmunología , Lípido A/farmacología , Lipopolisacáridos/inmunología , Macrófagos/inmunología , Ratones , Microesferas , Fagocitosis/inmunología , Poliestirenos/inmunología , Salmonella/inmunología
20.
J Biol Chem ; 287(27): 22771-80, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22582396

RESUMEN

In observations of single molecule behavior under V(max) conditions with minimal load, the F(1) sector of the ATP synthase (F-ATPase) rotates through continuous cycles of catalytic dwells (∼0.2 ms) and 120° rotation steps (∼0.6 ms). We previously established that the rate-limiting transition step occurs during the catalytic dwell at the initiation of the 120° rotation. Here, we use the phytopolyphenol, piceatannol, which binds to a pocket formed by contributions from α and ß stator subunits and the carboxyl-terminal region of the rotor γ subunit. Piceatannol did not interfere with the movement through the 120° rotation step, but caused increased duration of the catalytic dwell. The duration time of the intrinsic inhibited state of F(1) also became significantly longer with piceatannol. All of the beads rotated at a lower rate in the presence of saturating piceatannol, indicating that the inhibitor stays bound throughout the rotational catalytic cycle. The Arrhenius plot of the temperature dependence of the reciprocal of the duration of the catalytic dwell (catalytic rate) indicated significantly increased activation energy of the rate-limiting step to trigger the 120° rotation. The activation energy was further increased by combination of piceatannol and substitution of γ subunit Met(23) with Lys, indicating that the inhibitor and the ß/γ interface mutation affect the same transition step, even though they perturb physically separated rotor-stator interactions.


Asunto(s)
Escherichia coli/enzimología , Polifenoles/metabolismo , ATPasas de Translocación de Protón/metabolismo , Estilbenos/metabolismo , Secuencia de Aminoácidos , Antioxidantes/metabolismo , Antioxidantes/farmacología , Sitios de Unión/efectos de los fármacos , Sitios de Unión/fisiología , Catálisis , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Datos de Secuencia Molecular , Mutagénesis/fisiología , Polifenoles/química , Polifenoles/farmacología , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/genética , Quercetina/metabolismo , Quercetina/farmacología , Estilbenos/farmacología , Temperatura , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA