Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biol Pharm Bull ; 47(5): 967-977, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38763751

RESUMEN

Ensitrelvir is a noncovalent inhibitor of the main protease (Mpro) of severe acute respiratory syndrome coronavirus 2. Acquisition of drug resistance in virus-derived proteins is a serious therapeutic concern, and drug resistance occurs due to amino acid mutations. In this study, we computationally constructed 24 mutants, in which one residue around the active site was replaced with alanine and performed molecular dynamics simulations to the complex of Mpro and ensitrelvir to predict the residues involved in drug resistance. We evaluated the changes in the entire protein structure and ligand configuration in each of these mutants and estimated which residues were involved in ensitrelvir recognition. This method is called a virtual alanine scan. In nine mutants (S1A, T26A, H41A, M49A, L141A, H163A, E166A, V186A, and R188A), although the entire protein structure and catalytic dyad (cysteine (Cys)145 and histidine (His)41) were not significantly moved, the ensitrelvir configuration changed. Thus, it is considered that these mutants did not recognize ensitrelvir while maintaining Mpro enzymatic activities, and Ser1, Thr26, His41, Met49, Leu141, His163, Glu166, Val186, and Arg188 may be related to ensitrelvir resistance. The ligand shift noted in M49A was similar to that observed in M49I, which has been shown to be experimentally ensitrelvir resistant. These findings suggest that our research approach can predict mutations that incite drug resistance.


Asunto(s)
Alanina , Dominio Catalítico , Proteasas 3C de Coronavirus , Farmacorresistencia Viral , Simulación de Dinámica Molecular , SARS-CoV-2 , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/genética , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química , SARS-CoV-2/efectos de los fármacos , Alanina/genética , Farmacorresistencia Viral/genética , Humanos , Mutación , Tratamiento Farmacológico de COVID-19 , Inhibidores de Proteasas/farmacología , Indazoles , Triazinas , Triazoles
2.
Biol Pharm Bull ; 47(3): 620-628, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38479886

RESUMEN

One of the members of CYP, a monooxygenase, CYP2A13 is involved in the metabolism of nicotine, coumarin, and tobacco-specific nitrosamine. Genetic polymorphisms have been identified in CYP2A13, with reported loss or reduction in enzymatic activity in CYP2A13 allelic variants. This study aimed to unravel the mechanism underlying the diminished enzymatic activity of CYP2A13 variants by investigating their three-dimensional structures through molecular dynamics (MD) simulations. For each variant, MD simulations of 1000 ns were performed, and the obtained results were compared with those of the wild type. The findings indicated alterations in the interaction with heme in CYP2A13.4, .6, .8, and .9. In the case of CYP2A13.5, observable effects on the helix structure related to the interaction with the redox partner were identified. These conformational changes were sufficient to cause a decrease in enzyme activity in the variants. Our findings provide valuable insights into the molecular mechanisms associated with the diminished activity in the CYP2A13 polymorphisms.


Asunto(s)
Simulación de Dinámica Molecular , Nitrosaminas , Polimorfismo Genético , Nicotina , Oxidación-Reducción , Citocromo P-450 CYP2A6/genética
3.
Drug Metab Dispos ; 51(2): 165-173, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36414408

RESUMEN

The drug 5-fluorouracil (5-FU) is the first-choice chemotherapeutic agent against advanced-stage cancers. However, 10% to 30% of treated patients experience grade 3 to 4 toxicity. The deficiency of dihydropyrimidinase (DHPase), which catalyzes the second step of the 5-FU degradation pathway, is correlated with the risk of developing toxicity. Thus, genetic polymorphisms within DPYS, the DHPase-encoding gene, could potentially serve as predictors of severe 5-FU-related toxicity. We identified 12 novel DPYS variants in 3554 Japanese individuals, but the effects of these mutations on function remain unknown. In the current study, we performed in vitro enzymatic analyses of the 12 newly identified DHPase variants. Dihydrouracil or dihydro-5-FU hydrolytic ring-opening kinetic parameters, Km and Vmax , and intrinsic clearance (CLint = Vmax /Km ) of the wild-type DHPase and eight variants were measured. Five of these variants (R118Q, H295R, T418I, Y448H, and T513A) showed significantly reduced CLint compared with that in the wild-type. The parameters for the remaining four variants (V59F, D81H, T136M, and R490H) could not be determined as dihydrouracil and dihydro-5-FU hydrolytic ring-opening activity was undetectable. We also determined DHPase variant protein stability using cycloheximide and bortezomib. The mechanism underlying the observed changes in the kinetic parameters was clarified using blue-native polyacrylamide gel electrophoresis and three-dimensional structural modeling. The results suggested that the decrease or loss of DHPase enzymatic activity was due to reduced stability and oligomerization of DHPase variant proteins. Our findings support the use of DPYS polymorphisms as novel pharmacogenomic markers for predicting severe 5-FU-related toxicity in the Japanese population. SIGNIFICANCE STATEMENT: DHPase contributes to the degradation of 5-fluorouracil, and genetic polymorphisms that cause decreased activity of DHPase can cause severe toxicity. In this study, we performed functional analysis of 12 DHPase variants in the Japanese population and identified 9 genetic polymorphisms that cause reduced DHPase function. In addition, we found that the ability to oligomerize and the conformation of the active site are important for the enzymatic activity of DHPase.


Asunto(s)
Pueblos del Este de Asia , Fluorouracilo , Humanos , Amidohidrolasas/metabolismo , Fluorouracilo/efectos adversos , Fluorouracilo/metabolismo , Polimorfismo Genético/genética
4.
Int J Mol Sci ; 22(18)2021 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-34576282

RESUMEN

Cytochrome P450 (CYP) 2A6 is a monooxygenase involved in the metabolism of various endogenous and exogenous chemicals, such as nicotine and therapeutic drugs. The genetic polymorphisms in CYP2A6 are a cause of individual variation in smoking behavior and drug toxicities. The enzymatic activities of the allelic variants of CYP2A6 were analyzed in previous studies. However, the three-dimensional structures of the mutants were not investigated, and the mechanisms underlying activity reduction remain unknown. In this study, to investigate the structural changes involved in the reduction in enzymatic activities, we performed molecular dynamics simulations for ten allelic mutants of CYP2A6. For the calculated wild type structure, no significant structural changes were observed in comparison with the experimental structure. On the other hand, the mutations affected the interaction with heme, substrates, and the redox partner. In CYP2A6.44, a structural change in the substrate access channel was also observed. Those structural effects could explain the alteration of enzymatic activity caused by the mutations. The results of simulations provide useful information regarding the relationship between genotype and phenotype.


Asunto(s)
Citocromo P-450 CYP2A6/química , Citocromo P-450 CYP2A6/genética , Simulación de Dinámica Molecular , Polimorfismo Genético , Secuencia de Aminoácidos , Hemo/metabolismo , Humanos , Enlace de Hidrógeno , Cinética , Proteínas Mutantes/química , Oxidación-Reducción , Estructura Secundaria de Proteína , Especificidad por Sustrato
5.
Eur J Med Chem ; 222: 113578, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34171512

RESUMEN

A new biological scaffold was produced by replacing the 6π-electron phenyl ring-B of a natural flavone skeleton with a 10π-electron benzothiophene (BT). Since aromatic rings are important for ligand protein interactions, this expansion of the π-electron system of ring-B might change the bioactivity profile. One of the resulting novel natural product-inspired compounds, 2-(benzo[b]thiophen-3-yl)-5-hydroxy-7-isopropoxy-6-methoxyflavone (6), effectively arrested the cell cycle at the G2/M phase and displayed significant antiproliferative effects with IC50 values of 0.05-0.08 µM against multiple human tumor cell lines, including a multidrug resistant line. A structure-activity relationship study revealed that a 10π-electron system with high aromaticity, juxtaposed 4-oxo and 5-hydroxy groups, and 7-alkoxy groups were important for potent antimitotic activity. Interestingly, two BT-flavonols (3-hydroxyflavone), 16 and 20, with 3-hydroxy and 5-alkoxy groups, induced distinct biological profiles affecting the cell cycle at the G1/S phase by inhibition of DNA replication through an interaction with topoisomerase I.


Asunto(s)
Antineoplásicos/farmacología , Cromonas/farmacología , Tiofenos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Cromonas/síntesis química , Cromonas/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , Tiofenos/síntesis química , Tiofenos/química , Células Tumorales Cultivadas
6.
Bioorg Med Chem ; 30: 115904, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33341500

RESUMEN

Erypoegin K, an isoflavone isolated from the stem bark of Erythrina poeppigiana, has a single chiral carbon in its structure and exists naturally as a racemic mixture. Our previous study showed (S)-erypoegin K selectively exhibits potent anti-proliferative and apoptosis-inducing activity against human leukemia HL-60 cells. To identify the target molecule of (S)-erypoegin K, we employed the human cancer cell panel analysis (termed JFCR39) coupled with a drug sensitivity database of pharmacologically well-characterized drugs for comparison using the COMPARE algorithm. (S)-erypoegin K exhibited a similar profile to that of etoposide, suggesting the molecular target for erypoegin K may be topoisomerase II (Topo II). Subsequent experiments using purified human Topo IIα established that the (S)-isomer selectively stabilizes the cleavage complex composed of double-stranded plasmid DNA and the enzyme. Moreover, (S)-erypoegin K inhibited decatenation of kinetoplast DNA. Molecular docking studies clearly indicated specific binding of the (S)-isomer to the active site of Topo IIα involving hydrogen bonds that help stabilize the cleavage complex. (S)-erypoegin K displayed potent cytotoxic activity against two human gastric cancer cells GCIY and MKN-1 with IC50 values of 0.270 and 0.327 µM, respectively, and induced enzyme activities of caspase 3 and 9. Cell cycle analysis showed marked cell cycle arrest at G2 phase in both cell lines. (S)-erypoegin K also displayed significant antitumor activity toward GCIY xenografted mice. The present study suggests (S)-erypoegin K acts as a Topo II inhibitor to block the G2/M transition of cancer cells.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , ADN-Topoisomerasas de Tipo II/metabolismo , Erythrina/química , Neoplasias Gástricas/tratamiento farmacológico , Inhibidores de Topoisomerasa II/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Relación Estructura-Actividad , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/aislamiento & purificación , Células Tumorales Cultivadas
7.
Biol Pharm Bull ; 43(12): 1931-1939, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33268711

RESUMEN

Androgen receptor (AR) has a key role in the development and progression of prostate cancer, and AR antagonists are used for its remedy. Recently, carborane derivatives, which are carbon-containing boron clusters have attracted attention as new AR ligands. Here we determined the force field parameters of 10-vertex and 12-vertex p-carborane to facilitate in silico drug design of boron clusters. Then, molecular dynamics (MD) simulations of complexes of AR-carborane derivatives were performed to evaluate the parameters and investigate the influences of carborane derivatives on the three-dimensional structure of AR. Energy profiles were obtained using quantum chemical calculations, and the force-field parameters were determined by curve fitting of the energy profiles. The results of MD simulations indicated that binding of the antagonist-BA341 changed some hydrogen-bond formations involved in the structure and location of helix 12. Those results were consistent with previously reported data. The determined parameters are also useful for refining the structure of the carborane-receptor complex obtained by docking simulations and development of new ligands with carborane cages not only for AR but also for various receptors.


Asunto(s)
Antagonistas de Receptores Androgénicos/química , Compuestos de Boro/química , Sistemas de Liberación de Medicamentos/métodos , Simulación de Dinámica Molecular , Receptores Androgénicos/química , Antagonistas de Receptores Androgénicos/administración & dosificación , Antagonistas de Receptores Androgénicos/metabolismo , Compuestos de Boro/administración & dosificación , Compuestos de Boro/metabolismo , Estructura Secundaria de Proteína , Receptores Androgénicos/metabolismo , Relación Estructura-Actividad
8.
Biochim Biophys Acta Proteins Proteom ; 1868(10): 140480, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32599296

RESUMEN

The isomerization rate of aspartic acid (Asp) residue is known to be affected by the three-dimensional structures of peptides and proteins. Although the isomerized Asp residues were experimentally observed, structural features which affect the isomerization cannot be elucidated sufficiently because of protein denaturation and aggregation. In this study, molecular dynamics (MD) simulations were conducted on three αA-crystallin peptides (T6, T10, and T18), each containing a single Asp residue with different isomerization rate (T18 > T6 > T10) to clarify the structural factors of Asp isomerization tendency. For MD trajectories, distances between side-chain carboxyl carbon of Asp and main-chain amide nitrogen of (n + 1) residue (Cγ-N distances), root mean square fluctuations (RMSFs), and polar surface areas for main-chain amide nitrogen of (n + 1) residues (PSAN) were calculated, because these structural features are considered to relate to the formations of cyclic imide intermediates. RMSFs and PSAN are indexes of peptide backbone flexibilities and solvent exposure of the amide nitrogen, respectively. The average Cγ-N distances of T10 was longer than those of the other two peptides. In addition, the peptide containing Asp residue with a higher isomerization rate showed higher flexibility of the peptide backbone around the Asp residue. PSAN for amide nitrogen in T18 were much larger than those of other two peptides. The computational results suggest that Asp-residue isomerization rates are affected by these factors.


Asunto(s)
Ácido Aspártico/química , Péptidos/química , Cadena A de alfa-Cristalina/química , Secuencia de Aminoácidos , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Estereoisomerismo
9.
Int J Mol Sci ; 20(10)2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31096657

RESUMEN

Aspartic acid (Asp) residues are prone to non-enzymatic stereoinversion, and Asp-residue stereoinversion is believed to be mediated via a succinimide (SI) intermediate. The stereoinverted Asp residues are believed to cause several age-related diseases. However, in peptides and proteins, few studies have reported the stereoinversion of glutamic acid (Glu) residues whose structures are similar to that of Asp. We previously presumed that Glu-residue stereoinversion proceeds via a glutarimide (GI) intermediate and showed that the calculated activation barriers of SI- and GI-intermediate stereoinversion are almost equivalent in the gas phase. In this study, we investigated the stereoinversion pathways of the l-GI intermediate in the aqueous phase using B3LYP density functional methods. The calculated activation barrier of l-GI-intermediate stereoinversion in the aqueous phase was approximately 36 kcal·mol-1, which was much higher than that in the gas phase. Additionally, as this activation barrier exceeded that of Asp-residue stereoinversion, it is presumed that Glu-residue stereoinversion has a lower probability of proceeding under physiological conditions than Asp-residue stereoinversion.


Asunto(s)
Ácido Aspártico/química , Resistencia a Medicamentos , Ácido Glutámico/química , Piperidonas/química , Estereoisomerismo , Agua/química , Catálisis , Estructura Molecular , Péptidos/química , Proteínas/química , Succinimidas/química
10.
J Phys Chem B ; 123(15): 3147-3155, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30916562

RESUMEN

Uncommon crosslinked amino acids have been identified in several aging tissues and are suspected to trigger various age-related diseases. Several uncommon residues are formed when the dehydroalanine (Dha) residue undergoes a nucleophilic attack by surrounding residues. Dha residues are considered to be formed by posttranslational modification of serine (Ser) and cysteine residues. In the present study, we investigated the Dha residue formation mechanism catalyzed by dihydrogen phosphate ion (H2PO4-) using quantum chemical calculations. We obtained optimized geometries using the B3LYP density functional method and carried out single-point energy calculations using the second-order Møller-Plesset perturbation method. All calculations were performed using Ace-Ser-Nme (Ace = acetyl, Nme = methylamino) as a model compound. Results of the computational analysis suggest that the mechanism underlying the Dha residue formation from Ser consists of two steps: enolization and 1,3-elimination. The H2PO4- catalyzed both reactions as a proton-relay mediator. The calculated activation barrier for Dha residue formation was estimated as 30.4 kcal mol-1. In this pathway, the catalytic H2PO4- interacts with the Ser residue α-proton, carbonyl oxygen of Ser, and C-terminal side adjacent residues, and the calculated activation energy produced was the same as the experimentally reported value for nonenzymatic modifications of amino acid residues. Therefore, our calculation suggests that H2PO4--catalyzed Ser residue dehydration can proceed nonenzymatically.


Asunto(s)
Alanina/análogos & derivados , Fosfatos/química , Alanina/química , Catálisis , Modelos Moleculares , Conformación Molecular , Estereoisomerismo
11.
Chirality ; 30(5): 527-535, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29528512

RESUMEN

In contrast with the common belief that all the amino acid residues in higher organisms are l-forms, d-amino acid residues have been recently detected in various aging tissues. Aspartic acid (Asp) residues are known to be the most prone to stereoinvert via cyclic imide intermediate. Although the glutamic acid (Glu) is similar in chemical structure to Asp, little has been reported to detect d-Glu residues in human proteins. In this study, we investigated the mechanism of the Glu-residue stereoinversion catalyzed by water molecules using B3LYP/6-31+G(d,p) density functional theory calculations. We propose that the Glu-residue stereoinversion proceeds via a cyclic imide intermediate, i.e., glutarimide (GI). All calculations were performed by using a model compound in which a Glu residue was capped with acetyl and methylamino groups on the N- and C-termini, respectively. We found that two water molecules catalyze the three steps involved in the GI formation: iminolization, cyclization, and dehydration. The activation energy required for the Glu residue to form a GI intermediate was estimated to be 32.3 kcal mol-1 , which was higher than that of the experimental Asp-residue stereoinversion. This calculation result suggests that the Glu-residue stereoinversion is not favored under the physiological condition.


Asunto(s)
Ácido Glutámico/química , Proteínas/química , Amidas/química , Catálisis , Ciclización , Péptidos/química , Estereoisomerismo , Agua
12.
Chirality ; 30(4): 332-341, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29393985

RESUMEN

Recently, stereoinversions and isomerizations of amino acid residues in the proteins of living beings have been observed. Because isomerized amino acids cause structural changes and denaturation of proteins, isomerizations of amino acid residues are suspected to cause age-related diseases. In this study, AMBER molecular force field parameters were tested by using computationally generated nonapeptides and tripeptides including stereoinverted and/or isomerized amino acid residues. Energy calculations by using density functional theory were also performed for comparison. Although the force field parameters were developed by parameter fitting for l-α-amino acids, the accuracy of the computational results for d-amino acids and ß-amino acids was comparable to those for l-α-amino acids. The conformational energies for tripeptides calculated by using density functional theory were reproduced more accurately than those for nonapeptides calculated by using the molecular mechanical force field. The evaluations were performed for the ff99SB, ff03, ff12SB, and the latest ff14SB force field parameters.


Asunto(s)
Aminoácidos/química , Péptidos/química , Ácido Aspártico/química , Isomerismo , Simulación de Dinámica Molecular , Estereoisomerismo
13.
Biochim Biophys Acta Proteins Proteom ; 1866(7): 783-788, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29331333

RESUMEN

Recently, non-enzymatic stereoinversions of aspartic acid (Asp) residues in proteins and peptides have been reported. Here, we performed replica exchange molecular dynamics (REMD) simulations of model peptides (exon 6, 26A-1, and 26A-2) extracted from elastin to investigate their structural features, thereby revealing the factor that influences stereoinversions. For REMD trajectories, we calculated distances between carboxyl carbon in Asp and amide nitrogen in the (n + 1) residue (CN distances). Because bond formation between carbon and nitrogen is indispensable to the formation of a succinimide intermediate the distance between them seems to play an important role in stereoinversion. Moreover, we calculated polar surface areas (PSAs) for the trajectories, finding that CN distances and PSA were different for each peptide, with the longest CN distance and smallest PSA observed for exon 6 peptide, where stereoinversion of Asp is the slowest. Although the average CN distance was shorter for exon 26A-1 peptide than for exon 26A-2 peptide, the number of conformations with CN distances <3.0 Šwas greater for exon 26A-2 peptide than for exon 26A-1 peptide. Furthermore, PSA for amide nitrogen of the (n + 1) residue was larger for exon 26A-2 peptide than for exon 26A-1 peptide. These results indicated that the flexibility of Asp and (n + 1) residues and hydrophilicity of peptides, especially in the (n + 1) residue, play important roles in the stereoinversion of Asp. This article is part of a Special Issue entitled: D-Amino acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca.


Asunto(s)
Ácido Aspártico/química , Péptidos/química , Isomerismo , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA