Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
2.
Mater Today Bio ; 24: 100923, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38226014

RESUMEN

Stromal cells are key components of the tumour microenvironment (TME) and their incorporation into 3D engineered tumour-stroma models is essential for tumour mimicry. By engineering tumouroids with distinct tumour and stromal compartments, it has been possible to identify how gene expression of tumour cells is altered and influenced by the presence of different stromal cells. Ameloblastoma is a benign epithelial tumour of the jawbone. In engineered, multi-compartment tumouroids spatial transcriptomics revealed an upregulation of oncogenes in the ameloblastoma transcriptome where osteoblasts were present in the stromal compartment (bone stroma). Where a gingival fibroblast stroma was engineered, the ameloblastoma tumour transcriptome revealed increased matrix remodelling genes. This study provides evidence to show the stromal-specific effect on tumour behaviour and illustrates the importance of engineering biologically relevant stroma for engineered tumour models. Our novel results show that an engineered fibroblast stroma causes the upregulation of matrix remodelling genes in ameloblastoma which directly correlates to measured invasion in the model. In contrast the presence of a bone stroma increases the expression of oncogenes by ameloblastoma cells.

3.
Dev Cell ; 58(22): 2428-2446.e9, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37652013

RESUMEN

Thymus is necessary for lifelong immunological tolerance and immunity. It displays a distinctive epithelial complexity and undergoes age-dependent atrophy. Nonetheless, it also retains regenerative capacity, which, if harnessed appropriately, might permit rejuvenation of adaptive immunity. By characterizing cortical and medullary compartments in the human thymus at single-cell resolution, in this study we have defined specific epithelial populations, including those that share properties with bona fide stem cells (SCs) of lifelong regenerating epidermis. Thymic epithelial SCs display a distinctive transcriptional profile and phenotypic traits, including pleiotropic multilineage potency, to give rise to several cell types that were not previously considered to have shared origin. Using here identified SC markers, we have defined their cortical and medullary niches and shown that, in vitro, the cells display long-term clonal expansion and self-organizing capacity. These data substantively broaden our knowledge of SC biology and set a stage for tackling thymic atrophy and related disorders.


Asunto(s)
Células Madre , Timo , Humanos , Diferenciación Celular , Células Madre/metabolismo , Timo/metabolismo , Células Cultivadas , Células Epiteliales/metabolismo , Atrofia/metabolismo
4.
Nat Commun ; 14(1): 3680, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37369668

RESUMEN

In vitro, ACE2 translocates to the nucleus to induce SARS-CoV-2 replication. Here, using digital spatial profiling of lung tissues from SARS-CoV-2-infected golden Syrian hamsters, we show that a specific and selective peptide inhibitor of nuclear ACE2 (NACE2i) inhibits viral replication two days after SARS-CoV-2 infection. Moreover, the peptide also prevents inflammation and macrophage infiltration, and increases NK cell infiltration in bronchioles. NACE2i treatment increases the levels of the active histone mark, H3K27ac, restores host translation in infected hamster bronchiolar cells, and leads to an enrichment in methylated ACE2 in hamster bronchioles and lung macrophages, a signature associated with virus protection. In addition, ACE2 methylation is increased in myeloid cells from vaccinated patients and associated with reduced SARS-CoV-2 spike protein expression in monocytes from individuals who have recovered from infection. This protective epigenetic scarring of ACE2 is associated with a reduced latent viral reservoir in monocytes/macrophages and enhanced immune protection against SARS-CoV-2. Nuclear ACE2 may represent a therapeutic target independent of the variant and strain of viruses that use the ACE2 receptor for host cell entry.


Asunto(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animales , Humanos , SARS-CoV-2/fisiología , Enzima Convertidora de Angiotensina 2/metabolismo , Pulmón/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Péptidos/metabolismo , Epigénesis Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA