Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Biomacromolecules ; 25(9): 5834-5846, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39191734

RESUMEN

Bioorthogonal reactions present a promising strategy for minimizing off-target toxicity in cancer chemotherapy, yet a dependable nanoplatform is urgently required. Here, we have fabricated an acid-responsive polymer micelle for the specific delivery and activation of the prodrug within tumor cells through Ru catalyst-mediated bioorthogonal reactions. The decomposition of micelles, triggered by the cleavage of the hydrazone bond in the acidic lysosomal environment, facilitated the concurrent release of Alloc-DOX and the Ru catalyst within the cells. Subsequently, the uncaging process of Alloc-DOX was demonstrated to be induced by the high levels of glutathione within tumor cells. Notably, the limited glutathione inside normal cells prevented the conversion of Alloc-DOX into active DOX, thereby minimizing the toxicity toward normal cells. In tumor-bearing mice, this nanoplatform exhibited enhanced efficacy in tumor suppression while minimizing off-target toxicity. Our study provides an innovative approach for in situ drug activation that combines safety and effectiveness in cancer chemotherapy.


Asunto(s)
Doxorrubicina , Micelas , Polímeros , Profármacos , Rutenio , Profármacos/química , Profármacos/farmacología , Animales , Humanos , Ratones , Doxorrubicina/farmacología , Doxorrubicina/química , Rutenio/química , Polímeros/química , Catálisis , Sistemas de Liberación de Medicamentos/métodos , Línea Celular Tumoral , Ratones Endogámicos BALB C , Ratones Desnudos
2.
Biomacromolecules ; 25(6): 3432-3448, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38771294

RESUMEN

Preventing bacterial infections is a crucial aspect of wound healing. There is an urgent need for multifunctional biomaterials without antibiotics to promote wound healing. In this study, we fabricated a guar gum (GG)-based nanocomposite hydrogel, termed GBTF, which exhibited photothermal antibacterial therapy for infected wound healing. The GBTF hydrogel formed a cross-linked network through dynamic borate/diol interactions between GG and borax, thereby exhibiting simultaneously self-healing, adaptable, and injectable properties. Additionally, tannic acid (TA)/Fe3+ nanocomplexes (NCs) were incorporated into the hydrogel to confer photothermal antibacterial properties. Under the irradiation of an 808 nm near-infrared laser, the TA/Fe3+ NCs in the hydrogel could rapidly generate heat, leading to the disruption of bacterial cell membranes and subsequent bacterial eradication. Furthermore, the hydrogels exhibited good cytocompatibility and hemocompatibility, making them a precandidate for preclinical and clinical applications. Finally, they could significantly promote bacteria-infected wound healing by reducing bacterial viability, accelerating collagen deposition, and promoting epithelial remodeling. Therefore, the multifunctional GBTF hydrogel, which was composed entirely of natural substances including guar gum, borax, and polyphenol/ferric ion NCs, showed great potential for regenerating infected skin wounds in clinical applications.


Asunto(s)
Antibacterianos , Galactanos , Hidrogeles , Mananos , Nanocompuestos , Terapia Fototérmica , Gomas de Plantas , Cicatrización de Heridas , Mananos/química , Mananos/farmacología , Gomas de Plantas/química , Gomas de Plantas/farmacología , Galactanos/química , Galactanos/farmacología , Cicatrización de Heridas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Nanocompuestos/química , Hidrogeles/química , Hidrogeles/farmacología , Animales , Terapia Fototérmica/métodos , Ratones , Taninos/química , Taninos/farmacología , Staphylococcus aureus/efectos de los fármacos , Humanos , Escherichia coli/efectos de los fármacos , Boratos
3.
Mol Pharm ; 20(6): 3100-3114, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37148327

RESUMEN

Solid tumors are often poorly vascularized, which impairs oxygen supply and drug delivery to the cells. This often leads to genetic and translational adaptations that promote tumor progression, invasion, metastasis, and resistance to conventional chemo-/radiotherapy and immunotherapy. A hypoxia-directed nanosensitizer formulation of a hypoxia-activated prodrug (HAP) was developed by encapsulating iodoazomycin arabinofuranoside (IAZA), a 2-nitroimidazole nucleoside-based HAP, in a functionally modified carbohydrate-based nanogel, facilitating delivery and accrual selectively in the hypoxic head and neck and prostate cancer cells. Although IAZA has been reported as a clinically validated hypoxia diagnostic agent, recent studies have pointed to its promising hypoxia-selective anti-tumor properties, which make IAZA an excellent candidate for further exploration as a multimodal theranostic of hypoxic tumors. The nanogels are composed of a galactose-based shell with an inner core of thermoresponsive (di(ethylene glycol) methyl ethyl methacrylate) (DEGMA). Optimization of the nanogels led to high IAZA-loading capacity (≅80-88%) and a slow time-controlled release over 50 h. Furthermore, nanoIAZA (encapsulated IAZA) displayed superior in vitro hypoxia-selective cytotoxicity and radiosensitization in comparison to free IAZA in the head and neck (FaDu) and prostate (PC3) cancer cell lines. The acute systemic toxicity profile of the nanogel (NG1) was studied in immunocompromised mice, indicating no signs of toxicity. Additionally, growth inhibition of subcutaneous FaDu xenograft tumors was observed with nanoIAZA, demonstrating that this nanoformulation offers a significant improvement in tumor regression and overall survival compared to the control.


Asunto(s)
Hipoxia , Neoplasias de la Próstata , Masculino , Humanos , Ratones , Animales , Nanogeles , Hipoxia de la Célula , Neoplasias de la Próstata/tratamiento farmacológico , Galactosa , Línea Celular Tumoral
4.
Biomater Sci ; 10(15): 4271-4283, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35766516

RESUMEN

Developing nanomedicine with highly adaptive behaviors has shown great effectiveness in cancer treatment. However, the multi-functional integration of nano-therapeutic systems inevitably leads to complexity in the structure and impairs the operational efficiency or performance. Herein, we describe a novel nano-therapeutic system, G4-AB, capable of simultaneous dual conversions of the size and charge while targeting the acidic tumor microenvironment. G4-AB, containing a hydrophobic inner cavity for doxorubicin (DOX) loading, was synthesized by modifying amine-terminated 4th-generation polyamidoamine (G4-PAMAM) dendrimers with acylsulfonamide betaine (AB). Due to the dipole-dipole interaction among the AB moieties, G4-AB self-assembles to form micellar clusters with a zwitterionic surface. Possessing an anti-fouling property and suitable size, G4-AB exhibits optimized blood circulation under physiological pH conditions. Moreover, the extracellular pH value of the tumor microenvironment (pH 6.5) can trigger the protonation of acylsulfonamide, resulting in the cationization of AB and dissociation of G4-AB into unimolecular micelles (∼12 nm) due to electrostatic repulsion. The synergistic dual conversions further ensure drug accumulation with enhanced tumor penetration and cell internalization. The in vitro and in vivo experiments demonstrate that the G4-AB-DOX nano-therapeutic system possesses better antitumor efficiency and lower toxicity than free DOX or PEGylated PAMAM.


Asunto(s)
Dendrímeros , Dendrímeros/química , Doxorrubicina/química , Portadores de Fármacos/química , Micelas , Microambiente Tumoral
5.
ACS Macro Lett ; 11(4): 580-587, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35575337

RESUMEN

Overexpression of epidermal growth factor receptor (EGFR) is observed in multiple cancers such as colorectal, lung, and cervical solid tumors. Regulating the EGFR expression is an efficient strategy to manage these malignancies, and it can be achieved by using short interfering RNA (siRNA). Cell-penetrating peptides (CPPs) demonstrated an excellent capability to enhance the cellular uptake of siRNA, but high knockdown efficiencies have not been achieved due to endosomal entrapment. In this work, Schiff's base reaction was used to modify a block {P[LAEMA(2-lactobionamidoethyl methacrylamide)37]-b-P[FPMA(4-formyl phenyl methacrylate)2-st-DMA(N,N-dimethylacrylamide)2], P2} and two statistical [P(LAEMA23-st-FPMA3) (P3) and P(LAEMA25-st-FPMA2-st-DMA2) (P4)] aldehyde-based and galactose-based polymers, prepared via reversible addition-fragmentation chain-transfer (RAFT) polymerization. An arginine-rich peptide (ARP, KRRKRRRRRK) was used as a cell-penetrating peptide (CPP) and conjugated to the polymers via a Schiff base reaction. The resulting glycopolymer-peptide conjugates were utilized to condense the siRNA to prepare polyplexes with multivalent CPPs (MCPPs, a nanoparticle with multiple copies of the CPP) to enhance the endosomal escape. The polyplexes have different surface properties as determined by the architecture of polymers and the insertion of dimethyl amide moieties. The enhancement of cellular internalization of ARP was observed by labeling the polyplexes with fluorescein isothiocyanate (FITC)-siRNA showing a localization of polyplexes in the cytoplasm of a HeLa (cervical cancer) cell line. In the in vitro EFGR silencing study, the statistical glycopolymer-peptide (P3-P) polyplexes had superior EGFR silencing efficiency in comparison with the other polymers that were studied. Furthermore, P3-P polyplexes led to less off-targeting silencing than lipofectamine 3000. These encouraging results confirmed the potency of decorating galactose-based polymers with CPP, like ARP for their application in siRNA delivery and management of cervical carcinomas.


Asunto(s)
Péptidos de Penetración Celular , Humanos , Receptores ErbB/genética , Galactosa , Polímeros/química , ARN Interferente Pequeño/genética
6.
Biomacromolecules ; 23(6): 2552-2561, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35608162

RESUMEN

Injectable and self-healing hydrogels with exemplary biocompatibility and tunable mechanical properties are urgently needed due to their significant advantages for tissue engineering applications. Here, we report a new temperature-responsive aldehyde hydrogel with dual physical-cross-linked networks and injectable and self-healing properties prepared from an ABA-type triblock copolymer, poly{[FPMA(4-formylphenyl methacrylate)-co-DEGMA[di(ethylene glycol) methyl ether methacrylate]-b-MPC(2-methacryloyloxyethyl phosphorylcholine)-b-(FPMA-co-DEGMA)}. The thermoresponsive poly(DEGMA) segments drive the dehydration and hydrophobic interaction, enabling polymer chain winding as the first cross-linking network, when the temperature is raised above the critical gelation temperature. Meanwhile, the benzaldehyde groups offer physical interactions, including hydrogen bonding and hydrophobic and π-π stacking interactions as the second cross-linking network. When increasing the benzaldehyde content in the triblock copolymers from 0 to 8.2 mol %, the critical gelation temperature of the resulted hydrogels dropped from 35.5 to 19.9 °C and the mechanical modulus increased from 21 to 1411 Pa. Owing to the physical-cross-linked networks, the hydrogel demonstrated excellent injectability and self-healing properties. The cell viabilities tested from MTT assays toward both normal lung fibroblast cells (MRC-5) and cancerous cervical (HeLa) cells were found to be 100 and 101%, respectively, for varying polymer concentrations up to 1 mg/mL. The 3D cell encapsulation of the hydrogels was evaluated by a cytotoxicity Live/Dead assay, showing 92% cell viability. With these attractive physiochemical and biological properties, this temperature-responsive aldehyde hydrogel can be a promising candidate as a cell scaffold for tissue engineering.


Asunto(s)
Benzaldehídos , Hidrogeles , Aldehídos , Hidrogeles/química , Hidrogeles/farmacología , Metacrilatos/química , Polímeros/química , Temperatura
7.
Redox Biol ; 52: 102300, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35430547

RESUMEN

Solid tumours are often poorly oxygenated, which confers resistance to standard treatment modalities. Targeting hypoxic tumours requires compounds, such as nitroimidazoles (NIs), equipped with the ability to reach and become activated within diffusion limited tumour niches. NIs become selectively entrapped in hypoxic cells through bioreductive activation, and have shown promise as hypoxia directed therapeutics. However, little is known about their mechanism of action, hindering the broader clinical usage of NIs. Iodoazomycin arabinofuranoside (IAZA) and fluoroazomycin arabinofuranoside (FAZA) are clinically validated 2-NI hypoxic radiotracers with excellent tumour uptake properties. Hypoxic cancer cells have also shown preferential susceptibility to IAZA and FAZA treatment, making them ideal candidates for an in-depth study in a therapeutic setting. Using a head and neck cancer model, we show that hypoxic cells display higher sensitivity to IAZA and FAZA, where the drugs alter cell morphology, compromise DNA replication, slow down cell cycle progression and induce replication stress, ultimately leading to cytostasis. Effects of IAZA and FAZA on target cellular macromolecules (DNA, proteins and glutathione) were characterized to uncover potential mechanism(s) of action. Covalent binding of these NIs was only observed to cellular proteins, but not to DNA, under hypoxia. While protein levels remained unaffected, catalytic activities of NI target proteins, such as the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the detoxification enzyme glutathione S-transferase (GST) were significantly curtailed in response to drug treatment under hypoxia. Intraperitoneal administration of IAZA was well-tolerated in mice and produced early (but transient) growth inhibition of subcutaneous mouse tumours.


Asunto(s)
Neoplasias de Cabeza y Cuello , Nitroimidazoles , Animales , Hipoxia de la Célula , Línea Celular Tumoral , Hipoxia/tratamiento farmacológico , Ratones , Nitroimidazoles/farmacología
8.
Mol Pharm ; 19(6): 1766-1777, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-34473523

RESUMEN

Tirapazamine (TPZ) and its derivatives (TPZD) have shown their great potential for efficiently killing hypoxic cancer cells. However, unsatisfactory clinical outcomes resulting from the low bioavailability of the low-molecular TPZ and TPZD limited their further applications. Precise delivery and release of these prodrugs via functional nanocarriers can significantly improve the therapeutic effects due to the targeted drug delivery and enhanced permeability and retention (EPR) effect. Herein, zwitterionic block copolymer (BCP) micelles with aldehyde functional groups are prepared from the self-assembly of poly(2-methacryloyloxyethyl phosphorylcholine-b-poly(di(ethylene glycol) methyl ether methacrylate-co-4-formylphenyl methacrylate) [PMPC-b-P(DEGMA-co-FPMA)]. TPZD is then grafted onto PMPC-b-P(DEGMA-co-FPMA) to obtain a polymer-drug conjugate, PMPC-b-P(DEGMA-co-FPMA-g-TPZD) (BCP-TPZ), through the formation of a pH-responsive imine bond, exhibiting a pH-dependent drug release profile owing to the cleavage of the imine bond under acidic conditions. Outstandingly, BCP-TPZ shows around 13.7-fold higher cytotoxicity to hypoxic cancer cells in comparison to normoxic cancer cells evaluated through an in vitro cytotoxicity assay. The pH-responsiveness and hypoxia-specific cytotoxicity confer BCP-TPZ micelles a great potential to achieve precise delivery of TPZD and thus enhance the therapeutic effect toward tumor-hypoxia.


Asunto(s)
Micelas , Profármacos , Doxorrubicina/química , Humanos , Concentración de Iones de Hidrógeno , Hipoxia , Iminas , Metacrilatos/química , Polímeros/química , Profármacos/química , Profármacos/farmacología , Tirapazamina
9.
Acta Biomater ; 117: 335-348, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32956872

RESUMEN

Photodynamic Therapy (PDT) is an effective treatment modality for cancers, with Protoporphyrin IX (PPIX)-based PDT being the most widely used to treat cancers in patients. However, PDT is limited to superficial, thin (few mm in depth) lesions that can be accessed by visible wavelength light. Interstitial light-delivery strategies have been developed to treat deep-seated lesions (i.e. prostate cancer). The most promising of these are X-ray-induced scintillation nanoparticles, which have shown potential benefits for PDT of deep-seated tumors. Herein, the design and use of a new nanoscintillator-based radiation-activated PDT (radioPDT) system is investigated in the treatment of deep-seated tumors. Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide) (PEG-PLGA) nanospheres were loaded with a scintillator (LaF3:Ce3+) and photosensitizer (PPIX) to effect radioPDT. UV-Vis spectroscopy and electron microscopy studies demonstrated efficient encapsulation of nanoscintillators and PPIX (>90% efficiency) into the PEG-PLGA nanospheres. The nanoparticles were uniform in size and approximately 100 nm in diameter. They were highly stable and functional for up to 24 h under physiological conditions and demonstrated slow release kinetics. In vitro and in vivo toxicity studies showed no appreciable drug toxicity to human skin fibroblast (GM38), prostate cancer cells (PC3), and to C57/BL mice. Cell uptake studies demonstrated accumulation of the nanoparticles in the cytoplasm of PC3 cells. When activated, fluorescent resonant energy transfer (FRET) was evident via fluorescent spectroscopy and singlet oxygen yield. Determination of stability revealed that the nanoparticles were stable for up to 4 weeks. The nanoparticle production was scaled-up with no change in properties. This nanoparticle represents a unique, optimally designed therapeutic and diagnostic agent (theranostic) agent for radioPDT with characteristics capable of potentially augmenting radiotherapy for deep-seated tumors and integrating into current cancer radiotherapy.


Asunto(s)
Nanopartículas , Nanosferas , Fotoquimioterapia , Línea Celular Tumoral , Humanos , Fármacos Fotosensibilizantes , Poliésteres , Polietilenglicoles
10.
Biomacromolecules ; 21(3): 1264-1273, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-31913606

RESUMEN

The capability to slow ice growth and recrystallization is compulsory in the cryopreservation of cells and tissues to avoid injuries associated with the physical and chemical responses of freezing and thawing. Cryoprotective agents (CPAs) have been used to restrain cryoinjury and improve cell survival, but some of these compounds pose greater risks for the clinical application of cryopreserved cells due to their inherent toxicity. Trehalose is known for its unique physicochemical properties and its interaction with the phospholipids of the plasma membrane, which can reduce cell osmotic stress and stabilized the cryopreserved cells. Nonetheless, there has been a shortage of relevant studies on the synthesis of trehalose-based CPAs. We hereby report the synthesis and evaluation of a trehalose-based polymer and hydrogel and its use as a cryoprotectant and three-dimensional (3D) cell scaffold for cell encapsulation and organoid production. In vitro cytotoxicity studies with the trehalose-based polymers (poly(Tre-ECH)) demonstrated biocompatibility up to 100 mg/mL. High post-thaw cell membrane integrity and post-thaw cell plating efficiencies were achieved after 24 h of incubation with skin fibroblast, HeLa (cervical), and PC3 (prostate) cancer cell lines under both controlled-rate and ultrarapid freezing protocols. Differential scanning calorimetry and a splat cooling assay for the determination of ice recrystallization inhibition activity corroborated the unique properties of these trehalose-based polyethers as cryoprotectants. Furthermore, the ability to form hydrogels as 3D cell scaffolds encourages the use of these novel polymers in the development of cell organoids and cryopreservation platforms.


Asunto(s)
Criopreservación , Trehalosa , Supervivencia Celular , Crioprotectores/farmacología , Congelación , Humanos , Masculino , Trehalosa/farmacología
11.
ACS Macro Lett ; 9(11): 1687-1692, 2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-35617071

RESUMEN

Hypoxia-activated prodrugs (HAPs) have emerged as important candidates for chemotherapy due to their efficient killing of hypoxic cancer cells. Traditional small molecule agents, such as tirapazamine (TPZ) and its derivatives, have shown unsatisfactory therapeutic effect in clinical trials due to poor bioavailability in hypoxic tumor regions. Herein, an amphiphilic macromolecular prodrug with hypoxia-specific activity, named as hypoxia-activated macromolecular prodrug (HAMP), is prepared from poly{[poly(ethylene glycol) methacrylate]-st-(methacrylic acid)} [poly(PEGMA-st-MAA)], containing pendant TPZ residues. This polymer can self-assemble in an aqueous system into ∼37 nm sized nanoparticles. In vitro experiments indicated that HAMP shows 5× higher cytotoxicity to hypoxic cancer cells as compared to normoxic cancer cells. Therefore, the developed HAMP can be concurrently used with other therapeutic agents as a highly efficient hypoxia-activated agent.

12.
ACS Macro Lett ; 9(10): 1464-1470, 2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-35653664

RESUMEN

Although, various types of pharmaceuticals have been developed for cervical carcinomas, treatment with these drugs often results in a number of undesirable side effects, toxicity and multidrug resistance. Here, we aimed at modifying the genetic profiling of cancer cells by silencing the expression of the epidermal growth factor receptor (EGFR) gene. We have synthesized two kinds of RAFT-made, biocompatible, and cationic polymers for the encapsulation of silencing RNA (siRNA). This vector has a dual capability: it contains a cationic segment to complex with the siRNA and an omega-end modified with an oxaborole group via thiol-ene click chemistry that responds to the acidic tumor microenvironment. This structural innovation enables this macromolecule to interact with multiple polyplexes and release the siRNA in a mild acidic environment. A strategy that has shown enhanced gene silencing without elevating the cytotoxicity of the system, as determined by Western blot analysis. The success of this approach has afforded further interest in utilizing boron-carbohydrate interaction in the development of nonviral vectors for gene therapy.

13.
ACS Appl Mater Interfaces ; 11(47): 44742-44750, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31682100

RESUMEN

Nanocomposite hydrogels with multiresponsiveness and self-healing property are attracting extensive interest due to their enhanced performance for a wide range of applications. In this work, we have successfully developed novel hydrogels based on interfacial polymer-nanogel benzoxaborolate cross-linking at physiological pH. Temperature-sensitive nanogels (NG-Gal) containing galactose residues on the nanosurface were prepared and subsequently used as macro-cross-linkers to form a hydrogel network through formation of dynamic adducts with benzoxaborole groups of a hydrophilic copolymer poly(DMA-st-MAABO). Benefiting from the low pKa value of benzoxaborole (∼7.2), hydrogels can be constructed rapidly at physiological pH, which is of great significance for biomedical applications. Changing the molar ratio between benzoxaborole and galactose was found to alter the mechanical properties of hydrogels as confirmed by rheological measurements. The dynamic nature of benzoxaborole esters endowed the hydrogel with moldability and self-healing ability after disruption. Moreover, the hydrogel showed multiresponsiveness toward pH, sugar, adenosine triphosphate (ATP), hydrogen peroxide (H2O2), and temperature. Therefore, the novel nanocomposite hydrogel we demonstrated here exhibits great potential for biomedical applications such as tissue engineering and controlled drug delivery.


Asunto(s)
Hidrogeles/química , Nanogeles/química , Sistemas de Liberación de Medicamentos/instrumentación , Ésteres/química , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Polímeros/química , Temperatura , Ingeniería de Tejidos/instrumentación
14.
Biomacromolecules ; 20(5): 2068-2074, 2019 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-30970212

RESUMEN

The ErbB family of proteins, structurally related to the epidermal growth factor receptor (EGFR), is found to be overexpressed in many cancers such as gliomas, a lung and cervical carcinomas. Gene therapy allows to modify the expression of genes like ErbB and has been a promising strategy to target oncogenes and tumor suppressor genes. In the current work, novel hydroxyl-rich poly(glycidyl methacrylate) (PGMA)-based cationic glycopolymers were designed for intracellular small interfering RNA (siRNA) delivery to silence the EGFR gene. The cationic polymers with different sugar decoration degrees (0, 9, and 33%) were synthesized by ring-opening reaction of PGMA with ethanolamine and a lactobionic acid-derived aminosaccharide (Lac-NH2). Specific EGFR knockdown of the protein tyrosine kinase ErbB-overexpressing HeLa cells was achieved using these hydroxyl-rich polycation/siRNA complexes. Higher sugar content improved the biocompatibility of the polymers, but it also seems to decrease the EGFR knockdown capability, which should mainly be related to the surface charge of polyplexes. An optimum balance was observed with PGEL-1 (9% sugar content) formulation, achieving ∼52% knockdown efficiency as well as high cell viability. Considering the specific recognition between galactose residues and asialoglycoprotein receptor in hepatocytes, our novel PGMA-based cationic glycopolymers exhibited promising future to serve as a safe and targeting gene delivery vector to hepatoma cell line like HepG2.


Asunto(s)
Carbohidratos/química , Técnicas de Transferencia de Gen , Ácidos Polimetacrílicos/química , ARN Interferente Pequeño/genética , Cationes/química , Receptores ErbB/genética , Receptores ErbB/metabolismo , Etanolamina/química , Células HeLa , Células Hep G2 , Humanos
15.
Bioconjug Chem ; 30(2): 405-412, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30525507

RESUMEN

Tumor microenvironment redox-modulated galactose-based hyperbranched polymers (HRRP) composed of 2-lactobionamidoethylmethacrylamide (LAEMA) and 2-aminoethylmethacrylamide (AEMA) with molecular weights of 10 and 20 kDa and LAEMA:AEMA ratios (L:A) of 1.5 and 1 were prepared via the reversible addition-fragmentation chain transfer (RAFT) polymerization. The remarkable capability of these polymers to respond to the glutathione (GSH) concentration in the tumor environment is the key factor that regulates their cellular internalization and enhances selective siRNA release into the cancer cell cytoplasm. HRRP with a molecular weight of 10 kDa and L:A ratio of 1.5 was capable of forming nanosized polyplexes and achieved around 85% epidermal growth factor receptor (EGFR) silencing in cervical (HeLa) cancer cells in the presence of serum protein without compromising the biocompatibility of the system (around 95% cell viability). The excellent stability of the polyplexes in serum and low cytotoxicity in normal cell lines warrants the use of this redox-responsive galactose-based cationic hyperbranched polymers in gene silencing applications at the preclinical level.


Asunto(s)
Preparaciones de Acción Retardada/química , Galactosa/análogos & derivados , Polímeros/química , ARN Interferente Pequeño/administración & dosificación , Transfección , Cationes/química , Receptores ErbB/genética , Células HeLa , Humanos , Neoplasias/genética , Neoplasias/terapia , Oxidación-Reducción , Interferencia de ARN , ARN Interferente Pequeño/genética , Tratamiento con ARN de Interferencia , Transfección/métodos , Microambiente Tumoral
16.
Biomacromolecules ; 19(10): 4052-4058, 2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30157640

RESUMEN

Strong signaling cascades derived from upregulation and overexpression of growth factors such as the EGF-family (epidermal growth factors) have been crucially related to cancer pathogenesis. Gene silencing techniques to modulate the expression of oncogenes and tumor suppresor genes are a strategy that shows great promise for cancer management but still faces some limitations in the design of biocompatible and effective vectors. In this study, we synthesized, by reversible addition-fragmentation chain transfer (RAFT) polymerization, several acid degradable galactose-based hyperbranched cationic polymers with varying molecular weights (10 to 20 kDa) and compositions with 2-lactobioamidoethyl methacrylamide [LAEMA] and 2-aminoethyl methacrylamide hydrochloride [AEMA] at different ratios (2.0, 1.0, and 0.5). These polymers were then evaluated for their ability to enhance Epidermal Growth Factor Receptor (EGFR) knockdown in cervical carcinoma. All the polymer constructs have enhanced capabilities to condensate siRNA (small interfering RNA), showing low toxicity at higher LAEMA:AEMA ratios (1.0 and 2.0). Western blot assays were conducted to quantify the EGFR expression of each treatment group demonstrating superior gene knockdown efficiency for the polymers having a LAEMA:AEMA ratio of 2.0 than the lower ratio counterparts; while maintaining low toxicity levels. Gene silencing of EGFR of up to 60% was achieved with acid degradable polymers having 10 kDa molecular weight and a LAEMA:AEMA ratio of 2.0. The superior stability of the polyplexes under physiological conditions and the low cytotoxicity observed in the 48 h post-transfection demonstrated the high potential of these acid degradable galactose-based hyperbranched cationic polymers for EGFR silencing treatment applications at the clinical level.


Asunto(s)
Ácidos/química , Sistemas de Liberación de Medicamentos , Galactosa/química , Polímeros/química , ARN Interferente Pequeño/administración & dosificación , Neoplasias del Cuello Uterino/patología , Cationes , Supervivencia Celular , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Femenino , Silenciador del Gen , Humanos , Polimerizacion , ARN Interferente Pequeño/química , ARN Interferente Pequeño/genética , Células Tumorales Cultivadas , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética
17.
Biomacromolecules ; 19(2): 596-605, 2018 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-29338209

RESUMEN

Dynamic hydrogels based on arylboronic esters have been considered as ideal platforms for biomedical applications given their self-healing and injectable characteristics. However, there still exist some critical issues that need to be addressed or improved, including hydrogel biocompatibility, physiological usability, and tunability of mechanical properties. Here, two kinds of phospholipid bioinspired MPC copolymers, one is zwitterionic copolymer (PMB) containing a fixed 15 mol % of benzoxaborole (pKa ≈ 7.2) groups and the other is zwitterionic glycopolymers (PMG) with varied ratios of sugar groups (20%, 50%, 80%), were synthesized respectively via one-pot facile reversible addition-fragmentation chain transfer (RAFT) polymerization. PMBG hydrogels were formed spontaneously after mixing 10 wt % of PMB and PMG copolymer solutions because of dynamic benzoxaborole-sugar interactions. The mechanical properties of nine hydrogels (3 × 3) with different sugar contents and pHs (7.4, 8.4, 9.4) were carefully studied by rheological measurements, and hydrogels with higher sugar content and higher pH were found to have higher strength. Moreover, similar to other arylboronic ester-based hydrogels, PMBG hydrogels possessed not only self-healing and injectable properties but also pH/sugar responsiveness. Additionally, in vitro cytotoxicity tests of gel extracts on both normal and cancer cells further confirmed the excellent biocompatibility of the hydrogels, which should be ascribed to the biomimetic nature of phosphorylcholine (PC) and sugar residues of the copolymers. Consequently, the zwitterionic dynamic hydrogels provide promising future for diverse biomedical applications.


Asunto(s)
Benzoatos , Ácidos Borónicos , Carbohidratos , Hidrogel de Polietilenoglicol-Dimetacrilato , Ensayo de Materiales , Benzoatos/química , Benzoatos/farmacología , Ácidos Borónicos/química , Ácidos Borónicos/farmacología , Carbohidratos/química , Carbohidratos/farmacología , Células HeLa , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacología
18.
Biomacromolecules ; 19(1): 209-221, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29195038

RESUMEN

Cationic glycopolymers have shown to be excellent candidates for the fabrication of gene delivery devices due to their ability to electrostatically interact with negatively charged nucleic acids and the carbohydrate residues ensure enhanced stability and low toxicity of the polyplexes. The ability to engineer the polymers for optimized compositions, molecular weights, and architectures is critical in the design of effective gene delivery vehicles. Therefore, in this study, the aqueous reversible addition-fragmentation chain transfer polymerization (RAFT) was used to synthesize well-defined cationic glycopolymers with various cationic segments. For the preparation of cationic parts, N-[3-(dimethylamino)propyl]methacrylamide hydrochloride (DMAPMA·HCl), water-soluble methacrylamide monomer containing tertiary amine, was polymerized to produce DMAPMA·HCl homopolymer, which was then used as macroCTA in the block copolymerization with two other methacrylamide monomers containing different pendant groups, namely, 2-aminoethyl methacrylamide hydrochloride (AEMA) (with primary amine) and N-(3-aminopropyl) morpholine methacrylamide (MPMA) (with morpholine ring). In addition, statistical copolymers of DMAPMA.HCl with either AEMA or MPMA were also synthesized. All resulting cationic polymers were utilized as macroCTA for the RAFT copolymerization with 2-lactobionamidoethyl methacrylamide (LAEMA), which consists of the pendent galactose residues to achieve DMAPMA·HCl-based glycopolymers. From the in vitro cytotoxicity study, the cationic glycopolymers showed better cell viabilities than the corresponding cationic homopolymers. Furthermore, complexation of the cationic polymers with siRNA, cellular uptake of the resulting polyplexes, and gene knockdown efficiencies were evaluated. All cationic polymers/glycopolymers demonstrated good complexation ability with siRNA at low weight ratios. Among these cationic polymer-siRNA polyplexes, the polyplexes prepared from the two glycopolymers, P(DMAPMA65-b-LAEMA15) and P[(DMAPMA65-b-MPMA63)-b-LAEMA16], showed outstanding results in the cellular uptake, high EGFR knockdown, and low post-transfection toxicity, suggesting the great potential in siRNA delivery of these novel glycopolymers.


Asunto(s)
Acrilamidas/química , Polímeros/química , ARN Interferente Pequeño/administración & dosificación , Acrilamidas/administración & dosificación , Cationes , Receptores ErbB/genética , Células HeLa , Humanos , Polimerizacion , Polímeros/administración & dosificación , ARN Interferente Pequeño/genética , Electricidad Estática , Transfección
19.
ACS Appl Bio Mater ; 1(4): 961-966, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34996137

RESUMEN

Novel cationic hyperbranched polymers were prepared from 2-aminoethyl methacrylate (AEMA) and di(ethylene glycol) methyl ether methacrylate (DEGMA) via the reversible addition-fragmentation chain transfer (RAFT) polymerization for siRNA delivery. Non-degradable and acid-degradable hyperbranched polymers were synthesized using N,N'-methylenebis(acrylamide) (MBAm) and 2,2-dimethacroyloxy-1-ethoxypropane (DEP) cross-linkers, respectively. Both types of polymers were capable of forming very stable nanosized polyplexes with siRNA. Epidermal growth factor receptor (EGFR) silencing of 95% was achieved with the acid degradable cationic hyperbranched polymer, and no significant cytotoxicity was observed. Our results confirmed the high potency of using such hyperbranched polymers for the efficient protection and delivery of siRNA.

20.
ACS Macro Lett ; 6(7): 768-774, 2017 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35650860

RESUMEN

Oxaborole-based polymers are stimuli-responsive materials that can reversibly interact with diols at pH values higher than their pKa. The strong binding of the oxaborole with cis-hydroxyl groups allow rapid cross-linking of the polymer chains. In this study, we exploited this phenomenon to develop a novel delivery system for the complexation, protection, and delivery of epidermal growth factor receptors (EGFR) siRNA (small interfering RNA). Galactose and oxaborole polymers were first synthesized by the reversible addition-fragmentation chain transfer (RAFT) process, and they were found to show a robust interaction with each other via the oxaborole-diol effect, which allowed the formation of stable polyplexes with siRNA. Although complexes were successfully formed between the neutral galactose and oxaborole-based polymers, these complexes were insufficient in the protection of the siRNA. Therefore, cationic glycopolymers and oxaborole polymers were investigated showing superior complexation with siRNA and exhibiting effective gene silencing in HeLa (cervical) cancer cells, while showing low toxicity. Gene silencing of up to 60% was achieved with these new complexes in the presence and absence of serum. The excellent stability of the complexes under physiological conditions and the observed low cytotoxicity 48 h post-transfection demonstrated the high potential of this new system for gene silencing therapy application in clinics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA