Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
FEBS J ; 285(6): 1111-1128, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29360236

RESUMEN

Mycobacterium tuberculosis (Mt) F1 F0 ATP synthase (α3 :ß3 :γ:δ:ε:a:b:b':c9 ) is essential for the viability of growing and nongrowing persister cells of the pathogen. Here, we present the first NMR solution structure of Mtε, revealing an N-terminal ß-barrel domain (NTD) and a C-terminal domain (CTD) composed of a helix-loop-helix with helix 1 and -2 being shorter compared to their counterparts in other bacteria. The C-terminal amino acids are oriented toward the NTD, forming a domain-domain interface between the NTD and CTD. The Mtε structure provides a novel mechanistic model of coupling c-ring- and ε rotation via a patch of hydrophobic residues in the NTD and residues of the CTD to the bottom of the catalytic α3 ß3 -headpiece. To test our model, genome site-directed mutagenesis was employed to introduce amino acid changes in these two parts of the epsilon subunit. Inverted vesicle assays show that these mutations caused an increase in ATP hydrolysis activity and a reduction in ATP synthesis. The structural and enzymatic data are discussed in light of the transition mechanism of a compact and extended state of Mtε, which provides the inhibitory effects of this coupling subunit inside the rotary engine. Finally, the employment of these data with molecular docking shed light into the second binding site of the drug Bedaquiline. DATABASE: Structural data are available in the PDB under the accession number 5YIO.


Asunto(s)
Proteínas Bacterianas/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Mycobacterium tuberculosis/enzimología , ATPasas de Translocación de Protón/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Antituberculosos/metabolismo , Antituberculosos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Diarilquinolinas/metabolismo , Diarilquinolinas/farmacología , Hidrólisis , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Unión Proteica , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/genética , Homología de Secuencia de Aminoácido
2.
Free Radic Biol Med ; 115: 252-265, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29223533

RESUMEN

The Enterococcus faecalis alkyl hydroperoxide reductase complex (AhpR) with its subunits AhpC (EfAhpC) and AhpF (EfAhpF) are of paramount importance to restore redox homeostasis. Recently, the novel phenomenon of swapping of the catalytic domains of EfAhpF was uncovered. Here, we visualized its counterpart EfAhpC (187 residues) from the vancomycin-resistant E. faecalis (V583) bacterium by electron microscopy and demonstrate, that in contrast to other bacterial AhpCs, EfAhpC forms a stable decamer-ring irrespective of the redox state. The first crystallographic structure (2.8Å resolution) of the C-terminal truncated form (EfAhpC1-172) confirms the decamer ring and provides new insight into a transition state in-between a fully folded to a locally unfolded conformation in the catalytic center due to redox modulation. Amino acid substitutions of residues in the N- and C-termini as well as the oligomeric interphase of EfAhpC provide information into their structural and enzymatic roles. Mutagenesis, enzymatic and biophysical studies reveal the effect of the unusual existence of four cysteines in EfAhpC, which might optimize the functional adaptation of the E. faecalis enzyme under various physiological conditions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Enterococcus faecalis/fisiología , Infecciones por Bacterias Grampositivas/inmunología , Peroxirredoxinas/metabolismo , Antibacterianos/uso terapéutico , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dominio Catalítico/genética , Cristalografía por Rayos X , Cisteína/genética , Resistencia a Medicamentos , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Homeostasis , Humanos , Modelos Moleculares , Estructura Molecular , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Peroxirredoxinas/química , Peroxirredoxinas/genética , Conformación Proteica , Vancomicina/uso terapéutico
3.
FEBS Lett ; 591(15): 2323-2337, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28672070

RESUMEN

Modulation of intracellular guanosine 3',5'-bispyrophosphate ((p)ppGpp) level, the effector of the stringent response, is crucial for survival as well as optimal growth of prokaryotes and, thus, for bacterial pathogenesis and dormancy. In Mycobacterium tuberculosis (Mtb), (p)ppGpp synthesis and degradation are carried out by the bifunctional enzyme MtRel, which consists of 738 residues, including an N-terminal hydrolase- and synthetase-domain (N-terminal domain or NTD) and a C-terminus with a ribosome-binding site. Here, we present the first crystallographic structure of the enzymatically active MtRel NTD determined at 3.7 Å resolution. The structure provides insights into the residues of MtRel NTD responsible for nucleotide binding. Small-angle X-ray scattering experiments were performed to investigate the dimeric state of the MtRel NTD and possible substrate-dependent structural alterations.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/química , Pirofosfatasas/química , Pirofosfatasas/metabolismo , Proteínas Bacterianas/genética , Cromatografía Líquida de Alta Presión , Cristalografía por Rayos X , Ligasas/química , Ligasas/genética , Ligasas/metabolismo , Conformación Proteica , Dominios Proteicos , Multimerización de Proteína , Pirofosfatasas/genética , Dispersión del Ángulo Pequeño , Difracción de Rayos X
4.
Free Radic Biol Med ; 97: 588-601, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27417938

RESUMEN

Mycobacterium tuberculosis (Mtb) has the ability to persist within the human host for a long time in a dormant stage and re-merges when the immune system is compromised. The pathogenic bacterium employs an elaborate antioxidant defence machinery composed of the mycothiol- and thioredoxin system in addition to a superoxide dismutase, a catalase, and peroxiredoxins (Prxs). Among the family of Peroxiredoxins, Mtb expresses a 1-cysteine peroxiredoxin, known as alkylhydroperoxide reductase E (MtAhpE), and defined as a potential tuberculosis drug target. The reduced MtAhpE (MtAhpE-SH) scavenges peroxides to become converted to MtAhpE-SOH. To provide continuous availability of MtAhpE-SH, MtAhpE-SOH has to become reduced. Here, we used NMR spectroscopy to delineate the reduced (MtAhpE-SH), sulphenic (MtAhpE-SOH) and sulphinic (MtAhpE-SO2H) states of MtAhpE through cysteinyl-labelling, and provide for the first time evidence of a mycothiol-dependent mechanism of MtAhpE reduction. This is confirmed by crystallographic studies, wherein MtAhpE was crystallized in the presence of mycothiol and the structure was solved at 2.43Å resolution. Combined with NMR-studies, the crystallographic structures reveal conformational changes of important residues during the catalytic cycle of MtAhpE. In addition, alterations of the overall protein in solution due to redox modulation are observed by small angle X-ray scattering (SAXS) studies. Finally, by employing SAXS and dynamic light scattering, insight is provided into the most probable physiological oligomeric state of MtAhpE necessary for activity, being also discussed in the context of concerted substrate binding inside the dimeric MtAhpE.


Asunto(s)
Proteínas Bacterianas/química , Cisteína/química , Glicopéptidos/química , Inositol/química , Mycobacterium tuberculosis/enzimología , Peroxirredoxinas/química , Dominio Catalítico , Cristalografía por Rayos X , Enlace de Hidrógeno , Redes y Vías Metabólicas , Simulación del Acoplamiento Molecular , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción , Unión Proteica , Conformación Proteica en Hélice alfa , Estructura Cuaternaria de Proteína , Dispersión del Ángulo Pequeño , Soluciones , Tiorredoxinas/química
5.
FEBS J ; 282(23): 4620-38, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26402142

RESUMEN

In bacteria, an ensemble of alkyl hydroperoxide reductase subunits C (AhpC) and F (AhpF) is responsible for scavenging H2O2. AhpC donates electrons for the reduction of H2O2, which are provided after NADH oxidation by AhpF. The latter contains an N-terminal domain (NTD), catalyzing the electron transfer from NADH via a FAD of the C-terminal domain (CTD) into AhpC. The NADH-bound Escherichia coli AhpF structure revealed that NADH binding brings the substrate to the re-face of the FAD, making the Cys-Cys center of the CTD accessible to the NTD disulfide center for electron transfer (Kamariah et al. (2015) Biochim Biophys Acta 1847, 1139-1152). So far insight into the epitope and mechanism of AhpF and AhpC interaction as well as the electron transfer from the NTD to AhpC have been lacking. Here using NMR spectroscopy, we glean insight into the interaction of the NTD of AhpF with AhpC from E. coli. A coordinated disappearance of EcAhpF NTD peaks was observed in the presence of full length EcAhpC, indicating a long-lived AhpC-AhpF complex. C-terminal truncated EcAhpC resulted in a more dynamic interaction, revealing specific residue chemical shift perturbation and hence the binding epitope of the complex. Combined with docking studies, we have suggested that the C terminus of AhpC binds to the backside groove of the NTD. In addition, AhpC-AhpF formation is abolished under reducing conditions. We propose for the first time a binding mechanism in which the C terminus of AhpC wraps around the NTD, slowing the dissociation rate for an efficient electron transfer process, and a release mechanism mediated by the conformational change of the C terminus of AhpC upon reduction.


Asunto(s)
Biocatálisis , Dipéptidos/metabolismo , Escherichia coli/química , Resonancia Magnética Nuclear Biomolecular , Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Dipéptidos/química , Escherichia coli/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA