Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Virol ; 92(14)2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29743363

RESUMEN

Recent advances in mass spectrometry methods and instrumentation now allow for more accurate identification of proteins in low abundance. This technology was applied to Sindbis virus, the prototypical alphavirus, to investigate the viral proteome. To determine if host proteins are specifically packaged into alphavirus virions, Sindbis virus (SINV) was grown in multiple host cells representing vertebrate and mosquito hosts, and total protein content of purified virions was determined. This analysis identified host factors not previously associated with alphavirus entry, replication, or egress. One host protein, sorting nexin 5 (SNX5), was shown to be critical for the replication of three different alphaviruses, Sindbis, Mayaro, and Chikungunya viruses. The most significant finding was that in addition to the host proteins, SINV nonstructural protein 2 (nsP2) was detected within virions grown in all host cells examined. The protein and RNA-interacting capabilities of nsP2 coupled with its presence in the virion support a role for nsP2 during packaging and/or entry of progeny virus. This function has not been identified for this protein. Taken together, this strategy identified at least one host factor integrally involved in alphavirus replication. Identification of other host proteins provides insight into alphavirus-host interactions during viral replication in both vertebrate and invertebrate hosts. This method of virus proteome analysis may also be useful for the identification of protein candidates for host-based therapeutics.IMPORTANCE Pathogenic alphaviruses, such as Chikungunya and Mayaro viruses, continue to plague public health in developing and developed countries alike. Alphaviruses belong to a group of viruses vectored in nature by hematophagous (blood-feeding) insects and are termed arboviruses (arthropod-borne viruses). This group of viruses contains many human pathogens, such as dengue fever, West Nile, and Yellow fever viruses. With few exceptions, there are no vaccines or prophylactics for these agents, leaving one-third of the world population at risk of infection. Identifying effective antivirals has been a long-term goal for combating these diseases not only because of the lack of vaccines but also because they are effective during an ongoing epidemic. Mass spectrometry-based analysis of the Sindbis virus proteome can be effective in identifying host genes involved in virus replication and novel functions for virus proteins. Identification of these factors is invaluable for the prophylaxis of this group of viruses.


Asunto(s)
Infecciones por Alphavirus/metabolismo , Culicidae/metabolismo , Cisteína Endopeptidasas/metabolismo , Proteoma/metabolismo , Virus Sindbis/fisiología , Nexinas de Clasificación/metabolismo , Virión , Infecciones por Alphavirus/virología , Secuencia de Aminoácidos , Animales , Cricetinae , Culicidae/virología , Células HEK293 , Humanos , Homología de Secuencia , Replicación Viral
2.
J Virol ; 91(21)2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28794043

RESUMEN

There is an urgent need for therapeutic development to combat infections caused by Rift Valley fever virus (RVFV), which causes devastating disease in both humans and animals. In an effort to repurpose drugs for RVFV treatment, our previous studies screened a library of FDA-approved drugs. The most promising candidate identified was the hepatocellular and renal cell carcinoma drug sorafenib. Mechanism-of-action studies indicated that sorafenib targeted a late stage in virus infection and caused a buildup of virions within cells. In addition, small interfering RNA (siRNA) knockdown studies suggested that nonclassical targets of sorafenib are important for the propagation of RVFV. Here we extend our previous findings to identify the mechanism by which sorafenib inhibits the release of RVFV virions from the cell. Confocal microscopy imaging revealed that glycoprotein Gn colocalizes and accumulates within the endoplasmic reticulum (ER) and the transport of Gn from the Golgi complex to the host cell membrane is reduced. Transmission electron microscopy demonstrated that sorafenib caused virions to be present inside large vacuoles inside the cells. p97/valosin-containing protein (VCP), which is involved in membrane remodeling in the secretory pathway and a known target of sorafenib, was found to be important for RVFV egress. Knockdown of VCP resulted in decreased RVFV replication, reduced Gn Golgi complex localization, and increased Gn ER accumulation. The intracellular accumulation of RVFV virions was also observed in cells transfected with siRNA targeting VCP. Collectively, these data indicate that sorafenib causes a disruption in viral egress by targeting VCP and the secretory pathway, resulting in a buildup of virions within dilated ER vesicles.IMPORTANCE In humans, symptoms of RVFV infection mainly include a self-limiting febrile illness. However, in some cases, infected individuals can also experience hemorrhagic fever, neurological disorders, liver failure, and blindness, which could collectively be lethal. The ability of RVFV to expand geographically outside sub-Saharan Africa is of concern, particularly to the Americas, where native mosquito species are capable of virus transmission. Currently, there are no FDA-approved therapeutics to treat RVFV infection, and thus, there is an urgent need to understand the mechanisms by which the virus hijacks the host cell machinery to replicate. The significance of our research is in identifying the cellular target of sorafenib that inhibits RVFV propagation, so that this information can be used as a tool for the further development of therapeutics used to treat RVFV infection.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Niacinamida/análogos & derivados , Compuestos de Fenilurea/farmacología , Fiebre del Valle del Rift/tratamiento farmacológico , Virus de la Fiebre del Valle del Rift/fisiología , Vías Secretoras/efectos de los fármacos , Liberación del Virus/efectos de los fármacos , Adenosina Trifosfatasas/genética , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/virología , Proteínas de Ciclo Celular/genética , Chlorocebus aethiops , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/virología , Niacinamida/farmacología , Fiebre del Valle del Rift/metabolismo , Fiebre del Valle del Rift/virología , Virus de la Fiebre del Valle del Rift/efectos de los fármacos , Sorafenib , Células Tumorales Cultivadas , Proteína que Contiene Valosina , Células Vero , Virión/efectos de los fármacos , Replicación Viral/efectos de los fármacos
3.
Viruses ; 7(12): 6739-54, 2015 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-26703716

RESUMEN

Recent experimentation with the variants of the Ebola virus that differ in the glycoprotein's poly-uridine site, which dictates the form of glycoprotein produced through a transcriptional stutter, has resulted in questions regarding the pathogenicity and lethality of the stocks used to develop products currently undergoing human clinical trials to combat the disease. In order to address these concerns and prevent the delay of these critical research programs, we designed an experiment that permitted us to intramuscularly challenge statistically significant numbers of naïve and vaccinated cynomolgus macaques with either a 7U or 8U variant of the Ebola virus, Kikwit isolate. In naïve animals, no difference in survivorship was observed; however, there was a significant delay in the disease course between the two groups. Significant differences were also observed in time-of-fever, serum chemistry, and hematology. In vaccinated animals, there was no statistical difference in survivorship between either challenge groups, with two succumbing in the 7U group compared to 1 in the 8U challenge group. In summary, survivorship was not affected, but the Ebola virus disease course in nonhuman primates is temporally influenced by glycoprotein poly-U editing site populations.


Asunto(s)
Fiebre Hemorrágica Ebola/patología , Fiebre Hemorrágica Ebola/virología , Poli U/análisis , Proteínas del Envoltorio Viral/química , Factores de Virulencia/química , Animales , Modelos Animales de Enfermedad , Inyecciones Intramusculares , Macaca fascicularis , Análisis de Supervivencia , Proteínas del Envoltorio Viral/metabolismo , Factores de Virulencia/metabolismo
4.
J Virol ; 88(12): 6690-701, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24696472

RESUMEN

UNLABELLED: In previous work, a prototypic recombinant vesicular stomatitis virus Indiana serotype (rVSIV) vector expressing simian immunodeficiency virus (SIV) gag and human immunodeficiency virus type 1 (HIV-1) env antigens protected nonhuman primates (NHPs) from disease following challenge with an HIV-1/SIV recombinant (SHIV). However, when tested in a stringent NHP neurovirulence (NV) model, this vector was not adequately attenuated for clinical evaluation. For the work described here, the prototypic rVSIV vector was attenuated by combining specific G protein truncations with either N gene translocations or mutations (M33A and M51A) that ablate expression of subgenic M polypeptides, by incorporation of temperature-sensitive mutations in the N and L genes, and by deletion of the VSIV G gene to generate a replicon that is dependent on trans expression of G protein for in vitro propagation. When evaluated in a series of NHP NV studies, these attenuated rVSIV variants caused no clinical disease and demonstrated a very significant reduction in neuropathology compared to wild-type VSIV and the prototypic rVSIV vaccine vector. In spite of greatly increased in vivo attenuation, some of the rVSIV vectors elicited cell-mediated immune responses that were similar in magnitude to those induced by the much more virulent prototypic vector. These data demonstrate novel approaches to the rational attenuation of VSIV NV while retaining vector immunogenicity and have led to identification of an rVSIV N4CT1gag1 vaccine vector that has now successfully completed phase I clinical evaluation. IMPORTANCE: The work described in this article demonstrates a rational approach to the attenuation of vesicular stomatitis virus neurovirulence. The major attenuation strategy described here will be most likely applicable to other members of the Rhabdoviridae and possibly other families of nonsegmented negative-strand RNA viruses. These studies have also enabled the identification of an attenuated, replication-competent rVSIV vector that has successfully undergone its first clinical evaluation in humans. Therefore, these studies represent a major milestone in the development of attenuated rVSIV, and likely other vesiculoviruses, as a new vaccine platform(s) for use in humans.


Asunto(s)
Vacunas contra el SIDA/inmunología , Sistema Nervioso Central/virología , Vectores Genéticos/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Macaca fascicularis , Virus de la Estomatitis Vesicular Indiana/inmunología , Vacunas contra el SIDA/administración & dosificación , Vacunas contra el SIDA/genética , Animales , Anticuerpos Antivirales/inmunología , Sistema Nervioso Central/inmunología , Modelos Animales de Enfermedad , Vectores Genéticos/genética , Infecciones por VIH/prevención & control , Infecciones por VIH/virología , VIH-1/genética , Humanos , Macaca fascicularis/genética , Macaca fascicularis/inmunología , Macaca fascicularis/virología , Masculino , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Virus de la Estomatitis Vesicular Indiana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/administración & dosificación , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/inmunología
5.
J Virol Methods ; 143(1): 55-64, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17382412

RESUMEN

Assessment of in vivo viral replication of live attenuated recombinant vesicular stomatitis virus (rVSV) vaccine vector candidates encoding HIV gag requires comprehensive preclinical safety studies, and development of sensitive assays to monitor the outcome of vaccination of animals is important. In this study, two 2-step quantitative real-time RT-PCR assays were developed; a singleplex assay to detect VSV genomic RNA from ferrets inoculated intra-cranially (IC) or intra-nasally (IN) with either a wild-type (wt) virus or an attenuated rVSV vector engineered to express HIV gag protein, and a duplex assay to simultaneously detect VSV-N and HIV-gag mRNAs from cynomolgus macaques inoculated intra-thalamically (IT) with the same viruses. Using synthetic oligonucleotides as standards, the lower limit of detection of VSV-N and HIV-gag was 50 copies. Results showed high levels of wt VSV(IN) genomic RNA and mRNA in ferret and macaque tissues, respectively, and significantly lower levels of VSV genomic RNA and VSV-N and HIV-gag mRNAs in tissues from animals inoculated with the attenuated rVSV vector. These assays correlated with both the course of infection for these animals, and the infectious viral load measured by a standard plaque assay, and could be used to determine the safety profile of rVSV vaccine vectors.


Asunto(s)
Vacunas contra el SIDA , Productos del Gen gag/aislamiento & purificación , VIH/genética , ARN Viral/aislamiento & purificación , Virus de la Estomatitis Vesicular Indiana/genética , Vacunas contra el SIDA/genética , Animales , Terapia Antirretroviral Altamente Activa , Hurones , Productos del Gen gag/genética , Vectores Genéticos , Macaca , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sensibilidad y Especificidad , Virus de la Estomatitis Vesicular Indiana/aislamiento & purificación , Carga Viral , Replicación Viral
6.
J Virol ; 81(4): 2056-64, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17151112

RESUMEN

A variety of rational approaches to attenuate growth and virulence of vesicular stomatitis virus (VSV) have been described previously. These include gene shuffling, truncation of the cytoplasmic tail of the G protein, and generation of noncytopathic M gene mutants. When separately introduced into recombinant VSV (rVSV), these mutations gave rise to viruses distinguished from their "wild-type" progenitor by diminished reproductive capacity in cell culture and/or reduced cytopathology and decreased pathogenicity in vivo. However, histopathology data from an exploratory nonhuman primate neurovirulence study indicated that some of these attenuated viruses could still cause significant levels of neurological injury. In this study, additional attenuated rVSV variants were generated by combination of the above-named three distinct classes of mutation. The resulting combination mutants were characterized by plaque size and growth kinetics in cell culture, and virulence was assessed by determination of the intracranial (IC) 50% lethal dose (LD(50)) in mice. Compared to virus having only one type of attenuating mutation, all of the mutation combinations examined gave rise to virus with smaller plaque phenotypes, delayed growth kinetics, and 10- to 500-fold-lower peak titers in cell culture. A similar pattern of attenuation was also observed following IC inoculation of mice, where differences in LD(50) of many orders of magnitude between viruses containing one and two types of attenuating mutation were sometimes seen. The results show synergistic rather than cumulative increases in attenuation and demonstrate a new approach to the attenuation of VSV and possibly other viruses.


Asunto(s)
Glicoproteínas de Membrana/genética , Infecciones por Rhabdoviridae/virología , Virus de la Estomatitis Vesicular Indiana/genética , Proteínas del Envoltorio Viral/genética , Animales , Línea Celular , Chlorocebus aethiops , Cricetinae , Femenino , Eliminación de Gen , Genes Virales/genética , Ratones , Proteínas de la Nucleocápside/genética , Células Vero , Virus de la Estomatitis Vesicular Indiana/crecimiento & desarrollo , Virus de la Estomatitis Vesicular Indiana/patogenicidad , Proteínas de la Matriz Viral/genética , Virulencia , Replicación Viral
7.
Cell Immunol ; 239(2): 113-20, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16762332

RESUMEN

The glycoprotein D of HSV-2 (gD2) is currently a leading candidate vaccine target for genital herpes vaccines as both cellular and humoral responses can be generated against it. However, little is known about how vaccine composition will affect T cell epitope selection. A panel of 15-mer peptides (with 11 amino acid overlap) spanning full-length gD2 was used to investigate the fine specificity of T cell responses to gD2 as well as the role of vaccine composition on epitope selection. Spleen cells from BALB/c mice (H-2(d)) immunized with gD2, formulated with or without AlPO(4) and/or IL-12, were stimulated in vitro with overlapping gD2 peptides. Cellular responses (lymphoproliferation and IFN-gamma expression) were mapped to four epitopes within the gD2 molecule: gD2(49-63), gD2(105-119), gD2(245-259), and gD2(333-347). CTL analysis of these four epitopes indicated that not all of them could serve as a CTL epitope. Mice immunized with gD2 expressed from a viral vector mounted CTL responses primarily to one epitope located in the extracellular domain of gD2 (gD2(245-259)). More importantly, mice immunized with gD2 co-administered with IL-12 mounted CTL responses to an additional epitope located at the transmembrane-cytoplasmic junction of gD2 (gD2(333-347)). The location of this novel epitope emphasizes the benefit of using full-length versions of glycoproteins when designing vaccine components.


Asunto(s)
Antígenos CD4/metabolismo , Membrana Celular/inmunología , Citoplasma/inmunología , Mapeo Epitopo , Epítopos de Linfocito T/biosíntesis , Herpesvirus Humano 2/inmunología , Linfocitos T Citotóxicos/inmunología , Proteínas del Envoltorio Viral/inmunología , Secuencia de Aminoácidos , Animales , Células CHO , Chlorocebus aethiops , Cricetinae , Cricetulus , Epítopos de Linfocito T/genética , Femenino , Herpesvirus Humano 2/genética , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Fragmentos de Péptidos/inmunología , Linfocitos T Citotóxicos/metabolismo , Células Vero , Proteínas del Envoltorio Viral/genética
8.
J Virol ; 80(9): 4447-57, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16611905

RESUMEN

Recombinant vesicular stomatitis virus (rVSV) vectors offer an attractive approach for the induction of robust cellular and humoral immune responses directed against human pathogen target antigens. We evaluated rVSV vectors expressing full-length glycoprotein D (gD) from herpes simplex virus type 2 (HSV-2) in mice and guinea pigs for immunogenicity and protective efficacy against genital challenge with wild-type HSV-2. Robust Th1-polarized anti-gD immune responses were demonstrated in the murine model as measured by induction of gD-specific cytotoxic T lymphocytes and increased gamma interferon expression. The isotype makeup of the serum anti-gD immunoglobulin G (IgG) response was consistent with the presence of a Th1-CD4+ anti-gD response, characterized by a high IgG2a/IgG1 IgG subclass ratio. Functional anti-HSV-2 neutralizing serum antibody responses were readily demonstrated in both guinea pigs and mice that had been immunized with rVSV-gD vaccines. Furthermore, guinea pigs and mice were prophylactically protected from genital challenge with high doses of wild-type HSV-2. In addition, guinea pigs were highly protected against the establishment of latent infection as evidenced by low or absent HSV-2 genome copies in dorsal root ganglia after virus challenge. In summary, rVSV-gD vectors were successfully used to elicit potent anti-gD Th1-like cellular and humoral immune responses that were protective against HSV-2 disease in guinea pigs and mice.


Asunto(s)
Vacunas contra el Virus del Herpes Simple/inmunología , Herpesvirus Humano 2/inmunología , Células TH1/inmunología , Vagina/inmunología , Vagina/virología , Virus de la Estomatitis Vesicular Indiana/genética , Proteínas del Envoltorio Viral/inmunología , Animales , Formación de Anticuerpos/inmunología , Femenino , Vectores Genéticos/genética , Glicoproteínas/genética , Glicoproteínas/inmunología , Glicoproteínas/metabolismo , Cobayas , Vacunas contra el Virus del Herpes Simple/genética , Herpesvirus Humano 2/genética , Herpesvirus Humano 2/metabolismo , Ratones , Modelos Animales , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo
9.
Vaccine ; 23(2): 236-46, 2004 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-15531043

RESUMEN

The type of immune response elicited against HSV-2 infection may be a factor in the frequency and severity of recurrent disease, with non-recurrent status being associated with a Th1-like response. As administration of glycoprotein D subunit formulated with an aluminum-based adjuvant induces predominantly Th2-like immune responses, we sought to assess the ability of IL-12 to redirect anti-HSV immunity towards a Th1 response. Co-administration of gD with IL-12 resulted in gD-specific antibody subclass switching from predominantly IgG1 observed in mice immunized with either gD or gD/AlPO4 to a more balanced combination of IgG1 and IgG2a, and enhanced virus neutralizing activity. Spleen cells from mice immunized with gD and IL-12, and restimulated in vitro with HSV-2, developed into effector cells capable of secreting IFN-gamma and lysing HSV-2 infected targets, while those obtained from gD or gD/ALPO4 immunized mice did not express lytic activity. In vitro studies determined that these CTLs were CD4+ and that the cytotoxicity was primarily perforin dependent. Vaginal challenge with HSV-2 demonstrated that IL-12 co-administration with gD resulted in increased efficacy of this vaccine as compared to administration of gD antigen alone. This acquired protection persisted up to 1 year. Finally, adsorbing gD and IL-12 to AlPO4 decreased the optimal dose of IL-12 required to enhance gD immunogenicity and shift responses towards a Th1-like profile.


Asunto(s)
Adyuvantes Inmunológicos , Compuestos de Aluminio/química , Inmunidad/efectos de los fármacos , Interleucina-12/farmacología , Fosfatos/química , Animales , Anticuerpos/química , Modelos Animales de Enfermedad , Herpes Simple/inmunología , Herpes Simple/prevención & control , Herpesvirus Humano 2/inmunología , Humanos , Interleucina-12/inmunología , Ratones , Ratones Endogámicos BALB C , Solubilidad/efectos de los fármacos , Células TH1/efectos de los fármacos , Células TH1/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA