Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Vis Exp ; (192)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36847373

RESUMEN

Mutations in the mitochondrial genome (mtDNA) have been associated with maternally inherited genetic diseases. However, interest in mtDNA polymorphisms has increased in recent years due to the recently developed ability to produce models by mtDNA mutagenesis and a new appreciation of the association between mitochondrial genetic aberrations and common age-related diseases such as cancer, diabetes, and dementia. Pyrosequencing is a sequencing-by-synthesis technique that is widely employed across the mitochondrial field for routine genotyping experiments. Its relative affordability when compared to massive parallel sequencing methods and ease of implementation make it an invaluable technique in the field of mitochondrial genetics, allowing for the rapid quantification of heteroplasmy with increased flexibility. Despite the practicality of this method, its implementation as a means of mtDNA genotyping requires the observation of certain guidelines, specifically to avoid certain biases of biological or technical origin. This protocol outlines the necessary steps and precautions in designing and implementing pyrosequencing assays for use in the context of heteroplasmy measurement.


Asunto(s)
Genoma Mitocondrial , Polimorfismo de Nucleótido Simple , Genotipo , Análisis de Secuencia de ADN/métodos , ADN Mitocondrial/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
2.
Nat Commun ; 13(1): 750, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35136065

RESUMEN

Mitochondria host key metabolic processes vital for cellular energy provision and are central to cell fate decisions. They are subjected to unique genetic control by both nuclear DNA and their own multi-copy genome - mitochondrial DNA (mtDNA). Mutations in mtDNA often lead to clinically heterogeneous, maternally inherited diseases that display different organ-specific presentation at any stage of life. For a long time, genetic manipulation of mammalian mtDNA has posed a major challenge, impeding our ability to understand the basic mitochondrial biology and mechanisms underpinning mitochondrial disease. However, an important new tool for mtDNA mutagenesis has emerged recently, namely double-stranded DNA deaminase (DddA)-derived cytosine base editor (DdCBE). Here, we test this emerging tool for in vivo use, by delivering DdCBEs into mouse heart using adeno-associated virus (AAV) vectors and show that it can install desired mtDNA edits in adult and neonatal mice. This work provides proof-of-concept for use of DdCBEs to mutagenize mtDNA in vivo in post-mitotic tissues and provides crucial insights into potential translation to human somatic gene correction therapies to treat primary mitochondrial disease phenotypes.


Asunto(s)
ADN Mitocondrial/genética , Edición Génica/métodos , Genes Mitocondriales/genética , Terapia Genética/métodos , Enfermedades Mitocondriales/terapia , Animales , Dependovirus/genética , Femenino , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Humanos , Masculino , Ratones , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Modelos Animales , Mutagénesis , Mutación , Prueba de Estudio Conceptual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA