Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Biosci (Landmark Ed) ; 29(5): 181, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38812319

RESUMEN

BACKGROUND: Recent studies highlighted the presence of anti-α-Gal antibodies in patients implanted with commercial bioprosthetic heart valves (BHVs). BHVs expose residual α-Gal xenoantigen and their recognition by the circulating anti-Gal antibodies leads to opsonization of the device's tissue component with the consequent triggering of a deterioration pathway that culminates with calcification. Small animal models such as mice and rats have been broadly involved in the in vivo testing of biomaterials by subcutaneous implantation, especially for the effectiveness of BHVs anti-calcific treatments. However, since models employed for this purpose express α-Gal antigen, the implantation of BHVs' leaflets does not elicit a proper immunological response, so the calcification propensity may be dramatically underestimated. METHODS: An α-Gal knockout (KO) mouse model has been created, using the CRISP/Cas9 approach, and adopted to assess the calcification potential of commercial BHVs leaflets through the surgical implantation in the back subcutis area. Calcium quantification was performed by inductively coupled plasma analysis; immune response against the BHVs leaflets and α-Gal silencing was evaluated through immunological assays. RESULTS: Two months after the implantation of commercial BHV leaflets, the anti-Gal antibody titers in KO mice doubled when compared with those found in wild-type (WT) ones. Leaflets explanted from KO mice, after one month, showed a four-time increased calcium deposition concerning the ones explanted from WT. The degree of silencing of α-Gal varied, depending on the specific organ that was assessed. In any case, the animal model was suitable for evaluating implanted tissue responses. CONCLUSIONS: Such mouse model proved to be an accurate tool for the study of the calcific propensity of commercial BHVs leaflets than those hitherto used. Given its reliability, it could also be successfully used to study even other diseases in which the possible involvement of α-Gal has been observed.


Asunto(s)
Bioprótesis , Calcinosis , Modelos Animales de Enfermedad , Prótesis Valvulares Cardíacas , Ratones Noqueados , Animales , Calcinosis/inmunología , Calcinosis/etiología , Ratones , Ratones Endogámicos C57BL , Masculino
2.
Front Immunol ; 14: 1210098, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37426661

RESUMEN

Introduction: Preformed antibodies against αGal in the human and the presence of αGal antigens on the tissue constituting the commercial bioprosthetic heart valves (BHVs, mainly bovine or porcine pericardium), lead to opsonization of the implanted BHV, leading to deterioration and calcification. Murine subcutaneous implantation of BHVs leaflets has been widely used for testing the efficacy of anti-calcification treatments. Unfortunately, commercial BHVs leaflets implanted into a murine model will not be able to elicit an αGal immune response because such antigen is expressed in the recipient and therefore immunologically tolerated. Methods: This study evaluates the calcium deposition on commercial BHV using a new humanized murine αGal knockout (KO) animal model. Furtherly, the anti-calcification efficacy of a polyphenol-based treatment was deeply investigated. By using CRISPR/Cas9 approach an αGal KO mouse was created and adopted for the evaluation of the calcific propensity of original and polyphenols treated BHV by subcutaneous implantation. The calcium quantification was carried out by plasma analysis; the immune response evaluation was performed by histology and immunological assays. Anti-αGal antibodies level in KO mice increases at least double after 2 months of implantation of original commercial BHV compared to WT mice, conversely, the polyphenols-based treatment seems to effectively mask the antigen to the KO mice's immune system. Results: Commercial leaflets explanted after 1 month from KO mice showed a four-time increased calcium deposition than what was observed on that explanted from WT. Polyphenol treatment prevents calcium deposition by over 99% in both KO and WT animals. The implantation of commercial BHV leaflets significantly stimulates the KO mouse immune system resulting in massive production of anti-Gal antibodies and the exacerbation of the αGal-related calcific effect if compared with the WT mouse. Discussion: The polyphenol-based treatment applied in this investigation showed an unexpected ability to inhibit the recognition of BHV xenoantigens by circulating antibodies almost completely preventing calcific depositions compared to the untreated counterpart.


Asunto(s)
Bioprótesis , Calcinosis , Animales , Porcinos , Bovinos , Humanos , Ratones , Ratones Noqueados , Formación de Anticuerpos , Bioprótesis/efectos adversos , Calcio , Antígenos , Válvulas Cardíacas , Modelos Animales , Anticuerpos
3.
Eur J Cardiothorac Surg ; 63(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36548449

RESUMEN

OBJECTIVES: The purpose of this study was to evaluate the impact of a polyphenols-based treatment on the extrinsic mechanisms responsible for early bioprosthetic heart valve (BHV) degeneration. Structural degeneration can be driven by both extrinsic and intrinsic mechanisms. While intrinsic mechanisms have been associated with inherent biocompatibility characteristics of the BHV, the extrinsic ones have been reported to involve external causes, such as chemical, mechanical and hydrodynamic, responsible to facilitate graft damage. METHODS: The chemical interaction and the stability degree between polyphenols and pericardial tissue were carefully evaluated. The detoxification of glutaraldehyde in commercial BHVs models and the protective effect from in vivo calcification were taken into relevant consideration. Finally, the hydrodynamic and biomechanical features of the polyphenols-treated pericardial tissue were deeply investigated by pulse duplicator and stress-strain analysis. RESULTS: The study demonstrated the durability of the polyphenols-based treatment on pericardial tissue and the stability of the bound polyphenols. The treatment improves glutaraldehyde stabilization's current degree, demonstrating a surprising in vivo anti-calcific effect. It is able to make the pericardial tissue more pliable while maintaining the correct hydrodynamic characteristics. CONCLUSIONS: The polyphenols treatment has proved to be a promising approach capable of acting simultaneously on several factors related to the premature degeneration of cardiac valve substitutes by extrinsic mechanisms.


Asunto(s)
Bioprótesis , Calcinosis , Prótesis Valvulares Cardíacas , Humanos , Glutaral , Válvulas Cardíacas
4.
Cardiol Cardiovasc Med ; 6(5): 487-492, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36303878

RESUMEN

Background: The incidence of infective endocarditis in patients with bioprosthetic heart valves is over 100 times that of the general population with S. aureus recognized as the causative organism in approximately 1/3 of cases. In this study, (1) the microbicidal and virucidal effect of a polyphenolic solution was carefully evaluated. The same solution was then adopted for the treatment of a commercial bioprosthetic heart valve model for (2) the assessment of inhibition of S. aureus adhesiveness. Methods: (1) the viability of 9 microorganisms strains (colony-forming units) and the infectivity degree of 3 viral strains (cellular infection capacity) were evaluated after suspension in the polyphenolic solution. (2) Leaflets from a treated and untreated commercial surgical valve model were incubated with a known concentration of S. aureus. After incubation, the leaflets were homogenized and placed in specific culture media to quantify the bacterial load. Results: (1) The polyphenolic solution proved to be effective in eliminating microorganisms strains guaranteeing the killing of at least 99.9%. The effectiveness is particularly relevant against M. chelonae (99.999%). (2) The polyphenol-based treatment resulted in the inhibition of the S. aureus adhesiveness by 96% concerning untreated samples. Conclusions: The data suggest an interesting protective effect against infections and bacterial adhesiveness by a polyphenolic-based solution. Further studies will plan to extend the panel of microorganisms for the evaluation of the anti-adhesive effect; however, the use of optimized polyphenolic blends could lead to the development of new treatments capable to make transcatheter-valve substitutes more resistant to infection.

5.
PLoS One ; 9(6): e99593, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24940754

RESUMEN

Tissue-engineered heart valves are proposed as novel viable replacements granting longer durability and growth potential. However, they require extensive in vitro cell-conditioning in bioreactor before implantation. Here, the propensity of non-preconditioned decellularized heart valves to spontaneous in body self-regeneration was investigated in a large animal model. Decellularized porcine aortic valves were evaluated for right ventricular outflow tract (RVOT) reconstruction in Vietnamese Pigs (n = 11) with 6 (n = 5) and 15 (n = 6) follow-up months. Repositioned native valves (n = 2 for each time) were considered as control. Tissue and cell components from explanted valves were investigated by histology, immunohistochemistry, electron microscopy, and gene expression. Most substitutes constantly demonstrated in vivo adequate hemodynamic performances and ex vivo progressive repopulation during the 15 implantation months without signs of calcifications, fibrosis and/or thrombosis, as revealed by histological, immunohistochemical, ultrastructural, metabolic and transcriptomic profiles. Colonizing cells displayed native-like phenotypes and actively synthesized novel extracellular matrix elements, as collagen and elastin fibers. New mature blood vessels, i.e. capillaries and vasa vasorum, were identified in repopulated valves especially in the medial and adventitial tunicae of regenerated arterial walls. Such findings correlated to the up-regulated vascular gene transcription. Neoinnervation hallmarks were appreciated at histological and ultrastructural levels. Macrophage populations with reparative M2 phenotype were highly represented in repopulated valves. Indeed, no aspects of adverse/immune reaction were revealed in immunohistochemical and transcriptomic patterns. Among differentiated elements, several cells were identified expressing typical stem cell markers of embryonic, hematopoietic, neural and mesenchymal lineages in significantly higher number and specific topographic distribution in respect to control valves. Following the longest follow-up ever realized in preclinical models, non-preconditioned decellularized allogeneic valves offer suitable microenvironment for in vivo cell homing and tissue remodeling. Manufactured with simple, timesaving and cost-effective procedures, these promising valve replacements hold promise to become an effective alternative, especially for pediatric patients.


Asunto(s)
Implantación de Prótesis de Válvulas Cardíacas , Prótesis Valvulares Cardíacas , Regeneración/fisiología , Aloinjertos/ultraestructura , Animales , Forma de la Célula , Supervivencia Celular , Células Cultivadas , Perfilación de la Expresión Génica , Inmunohistoquímica , Inmunofenotipificación , Sus scrofa , Trasplante Homólogo
6.
Tissue Eng Part A ; 18(7-8): 725-36, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22011064

RESUMEN

Scaffolds for tissue engineering must be designed to direct desired events such as cell attachment, growth, and differentiation. The incorporation of extracellular matrix-derived peptides into biomaterials has been proposed to mimic biochemical signals. In this study, three synthetic fragments of fibronectin, vitronectin, and stromal-derived factor-1 were investigated for the first time as potential adhesive sequences for cardiomyocytes (CMs) compared to smooth muscle cells. CMs are responsive to all peptides to differing degrees, demonstrating the existence of diverse adhesion mechanisms. The pretreatment of nontissue culture well surfaces with the (Arginine-Glycine-Aspartic Acid) RGD sequence anticipated the appearance of CMs' contractility compared to the control (fibronectin-coated well) and doubled the length of cell viability. Future prospects are the inclusion of these sequences into biomaterial formulation with the improvement in cell adhesion that could play an important role in cell retention during dynamic cell seeding.


Asunto(s)
Materiales Biomiméticos/farmacología , Adhesión Celular/efectos de los fármacos , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Péptidos/farmacología , Ingeniería de Tejidos/métodos , Animales , Células Cultivadas , Inmunohistoquímica , Ratas , Ratas Endogámicas F344
7.
Eur J Cardiothorac Surg ; 39(4): 523-31, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21163670

RESUMEN

The development of viable and functional tissue-engineered heart valves (TEHVs) is a challenge that, for almost two decades, the scientific community has been committed to face to create life-lasting prosthetic devices for treating heart valve diseases. One of the main drawbacks of tissue-based commercial substitutes, xenografts and homografts, is their lack of viability, and hence failure to grow, repair, and remodel. In adults, the average bioprostheses life span is around 13 years, followed by structural valve degeneration, such as calcification; in pediatric, mechanical valves are commonly used instead of biological substitutes, as in young patients, the mobilization of calcium, due to bone remodeling, accelerates the calcification process. Moreover, neither mechanical nor bioprostheses are able to follow children's body growth. Cell seeding and repopulation of acellular heart valve scaffolds, biological and polymeric, appears as a promising way to create a living valve. Biomechanical stimuli have significant impact on cell behavior including in vitro differentiation, and physiological hemodynamic conditioning has been found to promote new tissue development. These concepts have led scientists to design bioreactors to mimic the in vivo environment of heart valves. Many different types of somatic and stem cells have been tested for colonizing both the surface and the core of the valve matrix but controversial results have been achieved so far.


Asunto(s)
Reactores Biológicos , Prótesis Valvulares Cardíacas/tendencias , Válvulas Cardíacas , Diseño de Prótesis/tendencias , Ingeniería de Tejidos/tendencias , Andamios del Tejido , Bioprótesis/tendencias , Humanos
8.
Biomaterials ; 30(25): 4104-16, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19481252

RESUMEN

The potential for in vitro colonization of decellularized valves by human bone marrow mesenchymal stem cells (hBM-MSCs) towards the anisotropic layers ventricularis and fibrosa and in homo- vs. heterotypic cell-ECM interactions has never been investigated. hBM-MSCs were expanded and characterized by immunofluorescence and FACS analysis. Porcine and human pulmonary valve leaflets (p- and hPVLs, respectively) underwent decellularization with Triton X100-sodium cholate treatment (TRICOL), followed by nuclear fragment removal. hBM-MSCs (2x10(6) cells/cm(2)) were seeded onto fibrosa (FS) or ventricularis (VS) of decellularized PVLs, precoated with FBS and fibronectin, and statically cultured for 30 days. Bioengineered PVLs revealed no histopathological features but a reconstructed endothelium lining and the presence of fibroblasts, myofibroblasts and SMCs, as in the corresponding native leaflet. The two valve layers behaved differently as regards hBM-MSC repopulation potential, however, with a higher degree of 3D spreading and differentiation in VS than in FS samples, and with enhanced cell survival and colonization effects in the homotypic ventricularis matrix, suggesting that hBM-MSC phenotypic conversion is strongly influenced in vitro by the anisotropic valve microstructure and species-specific matching between extracellular matrix and donor cells. These findings are of particular relevance to in vivo future applications of valve tissue engineering.


Asunto(s)
Células de la Médula Ósea/citología , Matriz Extracelular/química , Prótesis Valvulares Cardíacas , Válvulas Cardíacas/ultraestructura , Células Madre Mesenquimatosas/citología , Ingeniería de Tejidos/métodos , Andamios del Tejido , Adolescente , Adulto , Animales , Biomarcadores/metabolismo , Materiales Biomiméticos , Células de la Médula Ósea/fisiología , Diferenciación Celular/fisiología , Células Cultivadas , Válvulas Cardíacas/química , Humanos , Células Madre Mesenquimatosas/fisiología , Fenotipo , Diseño de Prótesis , Porcinos , Ingeniería de Tejidos/instrumentación , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA