Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Clin Invest ; 133(18)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37471145

RESUMEN

BACKGROUNDCellular cholesterol efflux capacity (CEC) is a better predictor of cardiovascular disease (CVD) events than HDL-cholesterol (HDL-C) but is not suitable as a routine clinical assay.METHODSWe developed an HDL-specific phospholipid efflux (HDL-SPE) assay to assess HDL functionality based on whole plasma HDL apolipoprotein-mediated solubilization of fluorescent phosphatidylethanolamine from artificial lipid donor particles. We first assessed the association of HDL-SPE with prevalent coronary artery disease (CAD): study I included NIH severe-CAD (n = 50) and non-CAD (n = 50) participants, who were frequency matched for sex, BMI, type 2 diabetes mellitus, and smoking; study II included Japanese CAD (n = 70) and non-CAD (n = 154) participants. We also examined the association of HDL-SPE with incident CVD events in the Prevention of Renal and Vascular End-stage Disease (PREVEND) study comparing 340 patients with 340 controls individually matched for age, sex, smoking, and HDL-C levels.RESULTSReceiver operating characteristic curves revealed stronger associations of HDL-SPE with prevalent CAD. The AUCs in study I were as follows: HDL-SPE, 0.68; apolipoprotein A-I (apoA-I), 0.62; HDL-C, 0.63; and CEC, 0.52. The AUCs in study II were as follows: HDL-SPE, 0.83; apoA-I, 0.64; and HDL-C, 0.53. Also longitudinally, HDL-SPE was significantly associated with incident CVD events independent of traditional risk factors with ORs below 0.2 per SD increment in the PREVEND study (P < 0.001).CONCLUSIONHDL-SPE could serve as a routine clinical assay for improving CVD risk assessment and drug discovery.TRIAL REGISTRATIONClinicalTrials.gov NCT01621594.FUNDINGNHLBI Intramural Research Program, NIH (HL006095-06).


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad de la Arteria Coronaria , Diabetes Mellitus Tipo 2 , Humanos , Lipoproteínas HDL , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Apolipoproteína A-I , HDL-Colesterol , Fosfolípidos
2.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36232786

RESUMEN

ApoB-100 is a member of a large lipid transfer protein superfamily and is one of the main apolipoproteins found on low-density lipoprotein (LDL) and very low-density lipoprotein (VLDL) particles. Despite its clinical significance for the development of cardiovascular disease, there is limited information on apoB-100 structure. We have developed a novel method based on the "divide and conquer" algorithm, using PSIPRED software, by dividing apoB-100 into five subunits and 11 domains. Models of each domain were prepared using I-TASSER, DEMO, RoseTTAFold, Phyre2, and MODELLER. Subsequently, we used disuccinimidyl sulfoxide (DSSO), a new mass spectrometry cleavable cross-linker, and the known position of disulfide bonds to experimentally validate each model. We obtained 65 unique DSSO cross-links, of which 87.5% were within a 26 Å threshold in the final model. We also evaluated the positions of cysteine residues involved in the eight known disulfide bonds in apoB-100, and each pair was measured within the expected 5.6 Å constraint. Finally, multiple domains were combined by applying constraints based on detected long-range DSSO cross-links to generate five subunits, which were subsequently merged to achieve an uninterrupted architecture for apoB-100 around a lipoprotein particle. Moreover, the dynamics of apoB-100 during particle size transitions was examined by comparing VLDL and LDL computational models and using experimental cross-linking data. In addition, the proposed model of receptor ligand binding of apoB-100 provides new insights into some of its functions.


Asunto(s)
Apolipoproteínas B , Cisteína , Apolipoproteína B-100 , Apolipoproteínas B/metabolismo , Simulación por Computador , Disulfuros , Ligandos , Lipoproteínas LDL/química , Lipoproteínas VLDL , Modelos Estructurales , Sulfóxidos
3.
PLoS One ; 11(2): e0150083, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26919698

RESUMEN

Human familial lecithin:cholesterol acyltransferase (LCAT) deficiency (FLD) is characterized by low HDL, accumulation of an abnormal cholesterol-rich multilamellar particle called lipoprotein-X (LpX) in plasma, and renal disease. The aim of our study was to determine if LpX is nephrotoxic and to gain insight into the pathogenesis of FLD renal disease. We administered a synthetic LpX, nearly identical to endogenous LpX in its physical, chemical and biologic characteristics, to wild-type and Lcat-/- mice. Our in vitro and in vivo studies demonstrated an apoA-I and LCAT-dependent pathway for LpX conversion to HDL-like particles, which likely mediates normal plasma clearance of LpX. Plasma clearance of exogenous LpX was markedly delayed in Lcat-/- mice, which have low HDL, but only minimal amounts of endogenous LpX and do not spontaneously develop renal disease. Chronically administered exogenous LpX deposited in all renal glomerular cellular and matrical compartments of Lcat-/- mice, and induced proteinuria and nephrotoxic gene changes, as well as all of the hallmarks of FLD renal disease as assessed by histological, TEM, and SEM analyses. Extensive in vivo EM studies revealed LpX uptake by macropinocytosis into mouse glomerular endothelial cells, podocytes, and mesangial cells and delivery to lysosomes where it was degraded. Endocytosed LpX appeared to be degraded by both human podocyte and mesangial cell lysosomal PLA2 and induced podocyte secretion of pro-inflammatory IL-6 in vitro and renal Cxl10 expression in Lcat-/- mice. In conclusion, LpX is a nephrotoxic particle that in the absence of Lcat induces all of the histological and functional hallmarks of FLD and hence may serve as a biomarker for monitoring recombinant LCAT therapy. In addition, our studies suggest that LpX-induced loss of endothelial barrier function and release of cytokines by renal glomerular cells likely plays a role in the initiation and progression of FLD nephrosis.


Asunto(s)
Glomérulos Renales/efectos de los fármacos , Deficiencia de la Lecitina Colesterol Aciltransferasa/metabolismo , Lipoproteína X/toxicidad , Proteinuria/etiología , Animales , Apolipoproteína A-I/metabolismo , Células Cultivadas , Citoesqueleto/efectos de los fármacos , Citoesqueleto/ultraestructura , Células Endoteliales/metabolismo , Células Endoteliales/patología , Matriz Extracelular/metabolismo , Perfilación de la Expresión Génica , Membrana Basal Glomerular/efectos de los fármacos , Membrana Basal Glomerular/patología , Mesangio Glomerular/citología , Mesangio Glomerular/metabolismo , Mesangio Glomerular/patología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Interleucina-6/metabolismo , Glomérulos Renales/patología , Deficiencia de la Lecitina Colesterol Aciltransferasa/patología , Lipoproteína X/metabolismo , Lipoproteína X/farmacocinética , Lipoproteínas HDL/metabolismo , Lisosomas/metabolismo , Tasa de Depuración Metabólica , Ratones , Ratones Endogámicos C57BL , Fosfatidilcolina-Esterol O-Aciltransferasa/metabolismo , Fosfolipasas A2/metabolismo , Pinocitosis , Podocitos/metabolismo , Podocitos/patología , Proteinuria/inducido químicamente , Proteinuria/genética , Proteinuria/patología
4.
Atherosclerosis ; 233(1): 113-21, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24529131

RESUMEN

OBJECTIVE: Subendothelial LDL retention by intimal matrix proteoglycans is an initial step in atherosclerosis and calcific aortic valve disease. Herein, we identify decorin and biglycan as the proteoglycans that preferentially retain LDL in intimal matrix at disease-prone sites in normal valve and vessel wall. METHODS: The porcine aortic valve and renal artery ostial diverter, initiation sites of calcific valve disease and renal atherosclerosis, respectively, from normal non-diseased animals were used as models in these studies. RESULTS: Fluorescent human LDL was selectively retained on the lesion-prone collagen/proteoglycan-enriched aortic surface of the valve, where the elastic lamina is depleted, as previously observed in lesion-prone sites in the renal ostium. iTRAQ mass spectrometry of valve and diverter protein extracts identified decorin and biglycan as the major subendothelial intimal matrix proteoglycans electrostatically retained on human LDL affinity columns. Decorin levels correlated with LDL binding in lesion-prone sites in both tissues. Collagen binding to LDL was shown to be proteoglycan-mediated. All known basement membrane proteoglycans bound LDL suggesting they may modulate LDL uptake into the subendothelial matrix. The association of purified decorin with human LDL in an in vitro microassay was blocked by serum albumin and heparin suggesting anti-atherogenic roles for these proteins in vivo. CONCLUSIONS: LDL electrostatic interactions with decorin and biglycan in the valve leaflets and vascular wall is a major source of LDL retention. The complementary electrostatic sites on LDL or these proteoglycans may provide a novel therapeutic target for preventing one of the earliest events in these cardiovascular diseases.


Asunto(s)
Válvula Aórtica/metabolismo , Biglicano/metabolismo , Decorina/metabolismo , Lipoproteínas LDL/metabolismo , Túnica Íntima/metabolismo , Animales , Aterosclerosis/metabolismo , Calcinosis/etiología , Cardiomiopatías/metabolismo , Humanos , Proteómica , Electricidad Estática , Porcinos
5.
Arterioscler Thromb Vasc Biol ; 33(2): e31-8, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23220274

RESUMEN

OBJECTIVE: Cell-surface localization and intracellular trafficking are essential for the function of ATP-binding cassette transporter A-1 (ABCA1). However, regulation of these activities is still largely unknown. Brefeldin A, an uncompetitive inhibitor of brefeldin A-inhibited guanine nucleotide-exchange proteins (BIGs), disturbs the intracellular distribution of ABCA1, and thus inhibits cholesterol efflux. This study aimed to define the possible roles of BIGs in regulating ABCA1 trafficking and cholesterol efflux, and further to explore the potential mechanism. METHODS AND RESULTS: By vesicle immunoprecipitation, we found that BIG1 was associated with ABCA1 in vesicles preparation from rat liver. BIG1 depletion reduced surface ABCA1 on HepG2 cells, and inhibited by 60% cholesterol release. In contrast, BIG1 overexpression increased surface ABCA1 and cholesterol secretion. With partial restoration of BIG1 through overexpression in BIG1-depleted cells, surface ABCA1 was also restored. Biotinylation and glutathione cleavage revealed that BIG1 small interfering RNA dramatically decreased the internalization and recycling of ABCA1. This novel function of BIG1 was dependent on the guanine nucleotide-exchange activity and achieved through activation of ADP-ribosylation factor 1. CONCLUSIONS: BIG1, through its ability to activate ADP-ribosylation factor 1, regulates cell-surface levels and function of ABCA1, indicating a transcription-independent mechanism for controlling ABCA1 action.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Membrana Celular/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factor 1 de Ribosilacion-ADP/metabolismo , Transportador 1 de Casete de Unión a ATP , Animales , Apolipoproteína A-I/metabolismo , Biotinilación , Colesterol/metabolismo , Glutatión/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Células HeLa , Células Hep G2 , Humanos , Inmunoprecipitación , Lipoproteínas LDL/metabolismo , Hígado/metabolismo , Masculino , Transporte de Proteínas , Interferencia de ARN , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Transfección
6.
J Biol Chem ; 283(47): 32273-82, 2008 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-18805791

RESUMEN

ApoA-I contains a tandem array of amphipathic helices with varying lipid affinity, which are critical in its ability to bind and remove lipids from cells by the ABCA1 transporter. In this study, the effect of asymmetry in the lipid affinity of amphipathic helices in a bihelical apoA-I mimetic peptide, 37pA, on lipid efflux by the ABCA1 transporter was examined. Seven peptide variants of 37pA were produced by substituting a varying number of hydrophobic amino acids for alanine on either one or both helices. The 5A peptide with five alanine substitutions in the second helix had decreased helical content compared with 37pA (5A, 12+/-1% helicity; 37pA, 28+/-2% helicity) and showed less self-association but, similar to the parent peptide, was able to readily solubilize phospholipid vesicles. Furthermore, 5A, unlike the parent peptide 37pA, was not hemolytic (37pA, 27+/-2% RBC lysis, 2 h, 18 microm). Finally, the 5A peptide stimulated cholesterol and phospholipid efflux by the ABCA1 transporter with higher specificity (ABCA1-transfected versus untransfected cells) than 37pA (5A, 9.7+/-0.77%, 18 h, 18 microm versus 1.5+/-0.27%, 18 h, 18 microm (p<0.0001); 37pA, 7.4+/-0.85%, 18 h, 18 microm versus 5.8+/-0.20%, 18 h, 18 microm (p=0.03)). In summary, we describe a novel bihelical peptide with asymmetry in the lipid affinity of its helices and properties similar to apoA-I in terms of specificity for cholesterol efflux by the ABCA1 transporter and low cytotoxicity.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Colesterol/metabolismo , Lípidos/química , Transportador 1 de Casete de Unión a ATP , Alanina/química , Secuencia de Aminoácidos , Transporte Biológico , Dicroismo Circular , Eritrocitos/citología , Guanidina/química , Humanos , Datos de Secuencia Molecular , Péptidos/química , Fosfolípidos/química , Conformación Proteica , Factores de Tiempo
7.
J Biol Chem ; 279(15): 15571-8, 2004 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-14747463

RESUMEN

We have previously established that the ABCA1 transporter, which plays a critical role in the lipidation of extracellular apolipoprotein acceptors, traffics between late endocytic vesicles and the cell surface (Neufeld, E. B., Remaley, A. T., Demosky, S. J., Jr., Stonik, J. A., Cooney, A. M., Comly, M., Dwyer, N. K., Zhang, M., Blanchette-Mackie, J., Santamarina-Fojo, S., and Brewer, H. B., Jr. (2001) J. Biol. Chem. 276, 27584-27590). The present study provides evidence that ABCA1 in late endocytic vesicles plays a role in cellular lipid efflux. Late endocytic trafficking was defective in Tangier disease fibroblasts that lack functional ABCA1. Consistent with a late endocytic protein trafficking defect, the hydrophobic amine U18666A retained NPC1 in abnormally tubulated, cholesterol-poor, Tangier disease late endosomes, rather than cholesterol-laden lysosomes, as in wild type fibroblasts. Consistent with a lipid trafficking defect, Tangier disease late endocytic vesicles accumulated both cholesterol and sphingomyelin and were immobilized in a perinuclear localization. The excess cholesterol in Tangier disease late endocytic vesicles retained massive amounts of NPC1, which traffics lysosomal cholesterol to other cellular sites. Exogenous apoA-I abrogated the cholesterol-induced retention of NPC1 in wild type but not in Tangier disease late endosomes. Adenovirally mediated ABCA1-GFP expression in Tangier disease fibroblasts corrected the late endocytic trafficking defects and restored apoA-I-mediated cholesterol efflux. ABCA1-GFP expression in wild type fibroblasts also reduced late endosome-associated NPC1, induced a marked uptake of fluorescent apoA-I into ABCA1-GFP-containing endosomes (that shuttled between late endosomes and the cell surface), and enhanced apoA-I-mediated cholesterol efflux. The combined results of this study suggest that ABCA1 converts pools of late endocytic lipids that retain NPC1 to pools that can associate with endocytosed apoA-I, and be released from the cell as nascent high density lipoprotein.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Enfermedad de Tangier/genética , Enfermedad de Tangier/terapia , Transportador 1 de Casete de Unión a ATP , Androstenos/farmacología , Anticolesterolemiantes/farmacología , Apolipoproteína A-I/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Colesterol/metabolismo , Detergentes/farmacología , Endocitosis , Endosomas/metabolismo , Fibroblastos/metabolismo , Proteínas Fluorescentes Verdes , Humanos , Inmunohistoquímica , Metabolismo de los Lípidos , Lipoproteínas HDL/metabolismo , Proteínas Luminiscentes/metabolismo , Lisosomas/metabolismo , Microscopía Confocal , Modelos Biológicos , Esfingomielinas/metabolismo
8.
J Clin Invest ; 112(3): 367-78, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12897204

RESUMEN

Hepatic lipase (HL) has a well-established role in lipoprotein metabolism. However, its role in atherosclerosis is poorly understood. Here we demonstrate that HL deficiency raises the proatherogenic apoB-containing lipoprotein levels in plasma but reduces atherosclerosis in lecithin cholesterol acyltransferase (LCAT) transgenic (Tg) mice, similar to results previously observed with HL-deficient apoE-KO mice. These findings suggest that HL has functions that modify atherogenic risk that are separate from its role in lipoprotein metabolism. We used bone marrow transplantation (BMT) to generate apoE-KO and apoE-KO x HL-KO mice, as well as LCAT-Tg and LCAT-Tg x HL-KO mice, chimeric for macrophage HL gene expression. Using in situ RNA hybridization, we demonstrated localized production of HL by donor macrophages in the artery wall. We found that expression of HL by macrophages enhances early aortic lesion formation in both apoE-KO and LCAT-Tg mice, without changing the plasma lipid profile, lipoprotein lipid composition, or HL and lipoprotein lipase activities. HL does, however, enhance oxidized LDL uptake by peritoneal macrophages. These combined data demonstrate that macrophage-derived HL significantly contributes to early aortic lesion formation in two independent mouse models and identify a novel mechanism, separable from the role of HL in plasma lipoprotein metabolism, by which HL modulates atherogenic risk in vivo.


Asunto(s)
Apolipoproteínas E/deficiencia , Arteriosclerosis/etiología , Lipasa/fisiología , Macrófagos Peritoneales/enzimología , Fosfatidilcolina-Esterol O-Aciltransferasa/fisiología , Animales , Apolipoproteínas E/genética , Arteriosclerosis/genética , Arteriosclerosis/fisiopatología , Trasplante de Médula Ósea , Femenino , Expresión Génica , Lipasa/deficiencia , Lipasa/genética , Lípidos/sangre , Lipoproteína Lipasa/genética , Lipoproteína Lipasa/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Fosfatidilcolina-Esterol O-Aciltransferasa/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Riesgo
9.
J Lipid Res ; 44(4): 828-36, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12562845

RESUMEN

In order to examine the necessary structural features for a protein to promote lipid efflux by the ABCA1 transporter, synthetic peptides were tested on ABCA1-transfected cells (ABCA1 cells) and on control cells. L-37pA, an l amino acid peptide that contains two class-A amphipathic helices linked by proline, showed a 4-fold increase in cholesterol and phospholipid efflux from ABCA1 cells compared to control cells. The same peptide synthesized with a mixture of l and d amino acids was less effective than L-37pA in solubilizing dimyristoyl phosphatidyl choline vesicles and in effluxing lipids. In contrast, the 37pA peptide synthesized with all d amino acids (D-37pA) was as effective as L-37pA. Unlike apoA-I, L-37pA and D-37pA were also capable, although at a reduced rate, of causing lipid efflux independent of ABCA1 from control cells, Tangier disease cells, and paraformaldehyde fixed ABCA1 cells. The ability of peptides to bind to cells correlated with their lipid affinity. In summary, the amphipathic helix was found to be a key structural motif for peptide-mediated lipid efflux from ABCA1, but there was no stereoselective requirement. In addition, unlike apoA-I, synthetic peptides can also efflux lipid by a passive, energy-independent pathway that does not involve ABCA1 but does depend upon their lipid affinity.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Metabolismo de los Lípidos , Péptidos/farmacología , Transportador 1 de Casete de Unión a ATP , Transportadoras de Casetes de Unión a ATP/genética , Colesterol/metabolismo , Células HeLa , Humanos , Cinética , Modelos Biológicos , Péptidos/síntesis química , Fosfolípidos/metabolismo , Estructura Secundaria de Proteína , Solubilidad/efectos de los fármacos , Estereoisomerismo , Tensoactivos/síntesis química , Tensoactivos/farmacología , Transfección
10.
J Lipid Res ; 44(2): 296-302, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12576511

RESUMEN

The current model for reverse cholesterol transport proposes that HDL transports excess cholesterol derived primarily from peripheral cells to the liver for removal. However, recent studies in ABCA1 transgenic mice suggest that the liver itself may be a major source of HDL cholesterol (HDL-C). To directly investigate the hepatic contribution to plasma HDL-C levels, we generated an adenovirus (rABCA1-GFP-AdV) that targets expression of mouse ABCA1-GFP in vivo to the liver. Compared with mice injected with control AdV, infusion of rABCA1-GFP-AdV into C57Bl/6 mice resulted in increased expression of mouse ABCA1 mRNA and protein in the liver. ApoA-I-dependent cholesterol efflux was increased 2.6-fold in primary hepatocytes isolated 1 day after rABCA1-GFP-AdV infusion. Hepatic ABCA1 expression in C57Bl/6 mice (n = 15) raised baseline levels of TC, PL, FC, HDL-C, apoE, and apoA-I by 150-300% (P < 0.05 all). ABCA1 expression led to significant compensatory changes in expression of genes that increase hepatic cholesterol, including HMG-CoA reductase (3.5-fold), LDLr (2.1-fold), and LRP (5-fold) in the liver. These combined results demonstrate that ABCA1 plays a key role in hepatic cholesterol efflux, inducing pathways that modulate cholesterol homeostasis in the liver, and establish the liver as a major source of plasma HDL-C.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , HDL-Colesterol/sangre , Colesterol/metabolismo , Hígado/metabolismo , Transportador 1 de Casete de Unión a ATP , Transportadoras de Casetes de Unión a ATP/genética , Adenoviridae/genética , Adenoviridae/metabolismo , Animales , Células Cultivadas , Hepatocitos/citología , Hepatocitos/metabolismo , Lípidos/sangre , Lipoproteínas/sangre , Hígado/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
11.
Biochem Biophys Res Commun ; 297(4): 974-9, 2002 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-12359250

RESUMEN

ABCA1 on the cell surface and in endosomes plays an essential role in the cell-mediated lipidation of apoA-I to form nascent HDL. Our previous studies of transgenic mice overexpressing ABCA1 suggested that ABCA1 in the liver plays a major role in regulating plasma HDL levels. The site of function of ABCA1 in the polarized hepatocyte was currently assessed by expression of an adenoviral construct encoding a human ABCA1-GFP fusion protein in the polarized hepatocyte-like WIF-B cell line. Consistent with localization of ABCA1 at the basolateral (vascular) cell surface, expression of ABCA1-GFP stimulated apoA-I mediated efflux of WIF-B cell cholesterol into the culture medium. Confocal fluorescence microscopy revealed that ABCA1-GFP was expressed solely on the basolateral surface and associated endocytic vesicles. These findings suggest an important role for hepatocyte basolateral membrane ABCA1 in the regulation of the levels of intracellular hepatic cholesterol, as well as plasma HDL.


Asunto(s)
Apolipoproteína A-I/metabolismo , Hepatocitos/metabolismo , Apolipoproteína A-I/sangre , Membrana Celular/metabolismo , Colesterol/metabolismo , Endocitosis , Genes Reporteros , Proteínas Fluorescentes Verdes , Células HeLa , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA