Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Neuron ; 103(1): 52-65.e6, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31101394

RESUMEN

Mitochondria are essential in long axons to provide metabolic support and sustain neuron integrity. A healthy mitochondrial pool is maintained by biogenesis, transport, mitophagy, fission, and fusion, but how these events are regulated in axons is not well defined. Here, we show that the Drosophila glutathione S-transferase (GST) Gfzf prevents mitochondrial hyperfusion in axons. Gfzf loss altered redox balance between glutathione (GSH) and oxidized glutathione (GSSG) and initiated mitochondrial fusion through the coordinated action of Mfn and Opa1. Gfzf functioned epistatically with the thioredoxin peroxidase Jafrac1 and the thioredoxin reductase 1 TrxR-1 to regulate mitochondrial dynamics. Altering GSH:GSSG ratios in mouse primary neurons in vitro also induced hyperfusion. Mitochondrial changes caused deficits in trafficking, the metabolome, and neuronal physiology. Changes in GSH and oxidative state are associated with neurodegenerative diseases like Alzheimer's. Our demonstration that GSTs are key in vivo regulators of axonal mitochondrial length and number provides a potential mechanistic link.


Asunto(s)
Axones/fisiología , Proteínas Portadoras/fisiología , Glutatión/metabolismo , Mitocondrias/fisiología , Animales , Axones/ultraestructura , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Femenino , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Oxidación-Reducción , Peroxidasas/genética , Peroxidasas/fisiología , Embarazo , Cultivo Primario de Células , Tiorredoxina Reductasa 1/genética , Tiorredoxina Reductasa 1/fisiología
2.
Nat Commun ; 8: 14355, 2017 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-28165006

RESUMEN

Draper/Ced-1/MEGF-10 is an engulfment receptor that promotes clearance of cellular debris in C. elegans, Drosophila and mammals. Draper signals through an evolutionarily conserved Src family kinase cascade to drive cytoskeletal rearrangements and target engulfment through Rac1. Glia also alter gene expression patterns in response to axonal injury but pathways mediating these responses are poorly defined. We show Draper is cell autonomously required for glial activation of transcriptional reporters after axonal injury. We identify TNF receptor associated factor 4 (TRAF4) as a novel Draper binding partner that is required for reporter activation and phagocytosis of axonal debris. TRAF4 and misshapen (MSN) act downstream of Draper to activate c-Jun N-terminal kinase (JNK) signalling in glia, resulting in changes in transcriptional reporters that are dependent on Drosophila AP-1 (dAP-1) and STAT92E. Our data argue injury signals received by Draper at the membrane are important regulators of downstream transcriptional responses in reactive glia.


Asunto(s)
Axones/patología , Proteínas de Drosophila/metabolismo , Proteínas de la Membrana/metabolismo , Degeneración Nerviosa/metabolismo , Neuroglía/patología , Transducción de Señal/fisiología , Animales , Animales Modificados Genéticamente , Axones/metabolismo , Membrana Celular/metabolismo , Membrana Celular/patología , Drosophila melanogaster/metabolismo , Femenino , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Degeneración Nerviosa/patología , Neuroglía/citología , Neuroglía/metabolismo , Fagocitosis , Factores de Transcripción STAT/metabolismo , Factor 4 Asociado a Receptor de TNF/metabolismo , Factor de Transcripción AP-1/metabolismo
3.
PLoS Biol ; 10(1): e1001245, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22272187

RESUMEN

Phosphatidylinositol 3-phosphate (PtdIns(3)P) is a signaling molecule important for many membrane trafficking events, including phagosome maturation. The level of PtdIns(3)P on phagosomes oscillates in two waves during phagosome maturation. However, the physiological significance of such oscillation remains unknown. Currently, the Class III PI 3-kinase (PI3K) Vps34 is regarded as the only kinase that produces PtdIns(3)P in phagosomal membranes. We report here that, in the nematode C. elegans, the Class II PI3K PIKI-1 plays a novel and crucial role in producing phagosomal PtdIns(3)P. PIKI-1 is recruited to extending pseudopods and nascent phagosomes prior to the appearance of PtdIns(3)P in a manner dependent on the large GTPase dynamin (DYN-1). PIKI-1 and VPS-34 act in sequence to provide overlapping pools of PtdIns(3)P on phagosomes. Inactivating both piki-1 and vps-34 completely abolishes the production of phagosomal PtdIns(3)P and disables phagosomes from recruiting multiple essential maturation factors, resulting in a complete arrest of apoptotic-cell degradation. We have further identified MTM-1, a PI 3-phosphatase that antagonizes the activities of PIKI-1 and VPS-34 by down-regulating PtdIns(3)P on phagosomes. Remarkably, persistent appearance of phagosomal PtdIns(3)P, as a result of inactivating mtm-1, blocks phagosome maturation. Our findings demonstrate that the proper oscillation pattern of PtdIns(3)P on phagosomes, programmed by the coordinated activities of two PI3Ks and one PI 3-phosphatase, is critical for phagosome maturation. They further shed light on how the temporally controlled reversible phosphorylation of phosphoinositides regulates the progression of multi-step cellular events.


Asunto(s)
Apoptosis , Caenorhabditis elegans/citología , Caenorhabditis elegans/enzimología , Fagosomas/enzimología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Animales , Caenorhabditis elegans/ultraestructura , Proteínas de Caenorhabditis elegans/metabolismo , Regulación hacia Abajo , Activación Enzimática , Fagosomas/ultraestructura , Unión Proteica , Proteínas de Unión al GTP rab/metabolismo
4.
Proc Natl Acad Sci U S A ; 108(11): 4441-6, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21368173

RESUMEN

Frontotemporal lobar degeneration is a progressive neurodegenerative syndrome that is the second most common cause of early-onset dementia. Mutations in the progranulin gene are a major cause of familial frontotemporal lobar degeneration [Baker M, et al. (2006) Nature 442:916-919 and Cruts M, et al. (2006) Nature 442:920-924]. Although progranulin is involved in wound healing, inflammation, and tumor growth, its role in the nervous system and the mechanism by which insufficient levels result in neurodegeneration are poorly understood [Eriksen and Mackenzie (2008) J Neurochem 104:287-297]. We have characterized the normal function of progranulin in the nematode Caenorhabditis elegans. We found that mutants lacking pgrn-1 appear grossly normal, but exhibit fewer apoptotic cell corpses during development. This reduction in corpse number is not caused by reduced apoptosis, but instead by more rapid clearance of dying cells. Likewise, we found that macrophages cultured from progranulin KO mice displayed enhanced rates of apoptotic-cell phagocytosis. Although most neurodegenerative diseases are thought to be caused by the toxic effects of aggregated proteins, our findings suggest that susceptibility to neurodegeneration may be increased by a change in the kinetics of programmed cell death. We propose that cells that might otherwise recover from damage or injury are destroyed in progranulin mutants, which in turn facilitates disease progression.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Apoptosis/genética , Proteínas de Caenorhabditis elegans/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Mutación/genética , Enfermedades Neurodegenerativas/genética , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Granulinas , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/citología , Cinética , Longevidad , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Modelos Biológicos , Neuronas/citología , Neuronas/metabolismo , Fagocitosis , Progranulinas
5.
PLoS Biol ; 8(2): e1000297, 2010 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-20126385

RESUMEN

Wnt signalling pathways have extremely diverse functions in animals, including induction of cell fates or tumours, guidance of cell movements during gastrulation, and the induction of cell polarity. Wnt can induce polar changes in cellular morphology by a remodelling of the cytoskeleton. However, how activation of the Frizzled receptor induces cytoskeleton rearrangement is not well understood. We show, by an in depth 4-D microscopy analysis, that the Caenorhabditis elegans Wnt pathway signals to CED-10/Rac via two separate branches to regulate modulation of the cytoskeleton in different cellular situations. Apoptotic cell clearance and migration of the distal tip cell require the MOM-5/Fz receptor, GSK-3 kinase, and APC/APR-1, which activate the CED-2/5/12 branch of the engulfment machinery. MOM-5 (Frizzled) thus can function as an engulfment receptor in C. elegans. Our epistatic analyses also suggest that the two partially redundant signalling pathways defined earlier for engulfment may act in a single pathway in early embryos. By contrast, rearrangement of mitotic spindles requires the MOM-5/Fz receptor, GSK-3 kinase, and beta-catenins, but not the downstream factors LIT-1/NLK or POP-1/Tcf. Taken together, our results indicate that in multiple developmental processes, CED-10/Rac can link polar signals mediated by the Wnt pathway to rearrangements of the cytoskeleton.


Asunto(s)
Apoptosis/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans , Transducción de Señal/fisiología , Huso Acromático/metabolismo , Proteínas Wnt/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Animales , Apoptosis/genética , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , Transducción de Señal/genética , Técnicas del Sistema de Dos Híbridos , Proteínas Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo , Proteínas de Unión al GTP rac/genética
6.
Mol Cell Biochem ; 256-257(1-2): 407-24, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-14977199

RESUMEN

Creatine (Cr) plays a key role in cellular energy metabolism and is found at high concentrations in metabolically active cells such as skeletal muscle and neurons. These, and a variety of other cells, take up Cr from the extra cellular fluid by a high affinity Na(+)/Cl(-)-dependent creatine transporter (CrT). Mutations in the crt gene, found in several patients, lead to severe retardation of speech and mental development, accompanied by the absence of Cr in the brain. In order to characterize CrT protein(s) on a biochemical level, antibodies were raised against synthetic peptides derived from the N- and C-terminal cDNA sequences of the putative CrT-1 protein. In total homogenates of various tissues, both antibodies, directed against these different epitopes, recognize the same two major polypetides on Western blots with apparent Mr of 70 and 55 kDa. The C-terminal CrT antibody (alpha-CrTCOOH) immunologically reacts with proteins located at the inner membrane of mitochondria as determined by immuno-electron microscopy, as well as by subfractionation of mitochondria. Cr-uptake experiments with isolated mitochondria showed these organelles were able to transport Cr via a sulfhydryl-reagent-sensitive transporter that could be blocked by anti-CrT antibodies when the outer mitochondrial membrane was permeabilized. We concluded that mitochondria are able to specifically take-up Cr from the cytosol, via a low-affinity CrT, and that the above polypeptides would likely represent mitochondrial CrT(s). However, by mass spectrometry techniques, the immunologically reactive proteins, detected by our anti-CrT antibodies, were identified as E2 components of the alpha-keto acid dehydrogenase multi enzyme complexes, namely pyruvate dehydrogenase (PDH), branched chain keto acid dehydrogenase (BC-KADH) and alpha-ketoglutarate dehydrogenase (alpha-KGDH). The E2 components of PDH are membrane associated, whilst it would be expected that a mitochondrial CrT would be a transmembrane protein. Results of phase partitioning by Triton X-114, as well as washing of mitochondrial membranes at basic pH, support that these immunologically cross-reactive proteins are, as expected for E2 components, membrane associated rather than transmembrane. On the other hand, the fact that mitochondrial Cr uptake into intact mitoplast could be blocked by our alpha-CrTCOOH antibodies, indicate that our antisera contain antibodies reactive to proteins involved in mitochondrial transport of Cr. The presence of specific antibodies against CrT is supported by results from plasma membrane vesicles isolated from human and rat skeletal muscle, where both 55 and 70 kDa polypeptides disappeared and a single polypeptide with an apparent electrophoretic mobility of approximately 60 kDa was enriched. This latter is most likely representing the genuine plasma membrane CrT. Due to the fact that all anti-CrT antibodies that were independently prepared by several laboratories seem to cross-react with non-CrT polypeptides, specifically with E2 components of mitochondrial dehydrogenases, further research is required to characterise on a biochemical/biophysical level the CrT polypeptides, e.g. to determine whether the approximately 60 kDa polypeptide is indeed a bona-fide CrT and to identify the mitochondrial transporter that is able to facilitate Cr-uptake into these organelles. Therefore, the anti-CrT antibodies available so far should only be used with these precautions in mind. This holds especially true for quantitation of CrT polypeptides by Western blots, e.g. when trying to answer whether CrT's are up- or down-regulated by certain experimental interventions or under pathological conditions. In conclusion, we still hold to the scheme that besides the high-affinity and high-efficiency plasmalemma CrT there exists an additional low affinity high Km Cr uptake mechanism in mitochondria. However, the exact biochemical nature of this mitochondrial creatine transport, still remains elusive. Finally, similar to the creatine kinase (CK) isoenzymes, which are specifically located at different cellular compartments, also the substrates of CK are compartmentalized in cytosolic and mitochondrial pools. This is in line with 14C-Cr-isotope tracer studies and a number of [31P]-NMR magnetization transfer studies, as well as with recent [1H]-NMR spectroscopy data.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Secuencia de Aminoácidos , Animales , Creatina/metabolismo , Humanos , Masculino , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Ratas , Ratas Wistar , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA