Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Clin Microbiol Rev ; : e0004523, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940505

RESUMEN

SUMMARYThe gut microbiota is a major factor contributing to the regulation of energy homeostasis and has been linked to both excessive body weight and accumulation of fat mass (i.e., overweight, obesity) or body weight loss, weakness, muscle atrophy, and fat depletion (i.e., cachexia). These syndromes are characterized by multiple metabolic dysfunctions including abnormal regulation of food reward and intake, energy storage, and low-grade inflammation. Given the increasing worldwide prevalence of obesity, cachexia, and associated metabolic disorders, novel therapeutic strategies are needed. Among the different mechanisms explaining how the gut microbiota is capable of influencing host metabolism and energy balance, numerous studies have investigated the complex interactions existing between nutrition, gut microbes, and their metabolites. In this review, we discuss how gut microbes and different microbiota-derived metabolites regulate host metabolism. We describe the role of the gut barrier function in the onset of inflammation in this context. We explore the importance of the gut-to-brain axis in the regulation of energy homeostasis and glucose metabolism but also the key role played by the liver. Finally, we present specific key examples of how using targeted approaches such as prebiotics and probiotics might affect specific metabolites, their signaling pathways, and their interactions with the host and reflect on the challenges to move from bench to bedside.

2.
Mol Metab ; 83: 101930, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38570069

RESUMEN

OBJECTIVE: Tumour progression drives profound alterations in host metabolism, such as adipose tissue depletion, an early event of cancer cachexia. As fatty acid consumption by cancer cells increases upon acidosis of the tumour microenvironment, we reasoned that fatty acids derived from distant adipose lipolysis may sustain tumour fatty acid craving, leading to the adipose tissue loss observed in cancer cachexia. METHODS: To evaluate the pro-lipolytic capacities of acid-exposed cancer cells, primary mouse adipocytes from subcutaneous and visceral adipose tissue were exposed to pH-matched conditioned medium from human and murine acid-exposed cancer cells (pH 6.5), compared to naive cancer cells (pH 7.4). To further address the role of tumoral acidosis on adipose tissue loss, a pH-low insertion peptide was injected into tumour-bearing mice, and tumoral acidosis was neutralised with a sodium bicarbonate buffer. Prolipolytic mediators were identified by transcriptomic approaches and validated on murine and human adipocytes. RESULTS: Here, we reveal that acid-exposed cancer cells promote lipolysis from subcutaneous and visceral adipocytes and that dampening acidosis in vivo inhibits adipose tissue depletion. We further found a set of well-known prolipolytic factors enhanced upon acidosis adaptation and unravelled a role for ß-glucuronidase (GUSB) as a promising new actor in adipocyte lipolysis. CONCLUSIONS: Tumoral acidosis promotes the mobilization of fatty acids derived from adipocytes via the release of soluble factors by cancer cells. Our work paves the way for therapeutic approaches aimed at tackling cachexia by targeting the tumour acidic compartment.


Asunto(s)
Acidosis , Adipocitos , Tejido Adiposo , Caquexia , Lipólisis , Animales , Ratones , Acidosis/metabolismo , Adipocitos/metabolismo , Humanos , Tejido Adiposo/metabolismo , Caquexia/metabolismo , Masculino , Microambiente Tumoral , Línea Celular Tumoral , Ratones Endogámicos C57BL , Ácidos Grasos/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Femenino , Glucuronidasa/metabolismo , Concentración de Iones de Hidrógeno
3.
Haematologica ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38546675

RESUMEN

The gut microbiota makes critical contributions to host homeostasis, and its role in the treatment of acute myeloid leukaemia (AML) has attracted attention. We investigated whether the gut microbiome is affected by AML, and whether such changes are associated with cachectic hallmarks. Biological samples and clinical data were collected from 30 antibiotic-free AML patients at diagnosis and matched volunteers (1:1) in a multicenter cross-sectional prospective study. The composition and functional potential of the faecal microbiota were analyzed using shotgun metagenomics. Faecal, blood, and urine metabolomics analyses were performed. AML patients displayed muscle weakness, anorexia, signs of altered gut function, and glycaemic disorders. The composition of the faecal microbiota differed between patients with AML and control subjects, with an increase in oral bacteria. Alterations in bacterial functions and faecal metabolome support an altered redox status in the gut microbiota, which may contribute to the altered redox status observed in patients with AML. Eubacterium eligens, reduced 3-fold in AML patients, was strongly correlated with muscle strength and citrulline, a marker of enterocyte mass and function. Blautia and Parabacteroides, increased in patients with AML, were correlated with anorexia. Several bacterial taxa and metabolites (e.g. Blautia, Prevotella, phenylacetate, and hippurate) previously associated with glycaemic disorders were altered. Our work revealed important perturbations in the gut microbiome of AML patients at diagnosis, which are associated with muscle strength, altered redox status, and anorexia. These findings pave the way for future mechanistic work to explore the function and therapeutic potential of the bacteria identified in this study.

4.
Clin Nutr ; 42(11): 2214-2228, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37806074

RESUMEN

BACKGROUND & AIMS: Acute myeloid leukaemia (AML) chemotherapy has been reported to impact gut microbiota composition. In this study, we investigated using a multi -omics strategy the changes in the gut microbiome induced by AML intense therapy and their association with gut barrier function and cachectic hallmarks. METHODS: 10 AML patients, allocated to standard induction chemotherapy (SIC), were recruited. Samples and data were collected before any therapeutic intervention (T0), at the end of the SIC (T1) and at discharge (T4). Gut microbiota composition and function, markers of inflammation, metabolism, gut barrier function and cachexia, as well as faecal, blood and urine metabolomes were assessed. RESULTS: AML patients demonstrated decreased appetite, weight loss and muscle wasting during hospitalization, with an incidence of cachexia of 50%. AML intensive treatment transiently impaired the gut barrier function and led to a long-lasting change of gut microbiota composition characterized by an important loss of diversity. Lactobacillaceae and Campylobacter concisus were increased at T1 while Enterococcus faecium and Staphylococcus were increased at T4. Metabolomics analyses revealed a reduction in urinary hippurate and faecal bacterial amino acid metabolites (bAAm) (2-methylbutyrate, isovalerate, phenylacetate). Integration using DIABLO revealed a deep interconnection between all the datasets. Importantly, we identified bacteria which disappearance was associated with impaired gut barrier function (Odoribacter splanchnicus) and body weight loss (Gemmiger formicilis), suggesting these bacteria as actionable targets. CONCLUSION: AML intensive therapy transiently impairs the gut barrier function while inducing enduring alterations in the composition and metabolic activity of the gut microbiota that associate with body weight loss. TRIAL REGISTRATION: NCT03881826, https://clinicaltrials.gov/ct2/show/NCT03881826.


Asunto(s)
Microbioma Gastrointestinal , Leucemia Mieloide Aguda , Humanos , Microbioma Gastrointestinal/fisiología , Caquexia , Pérdida de Peso , Metabolómica , Leucemia Mieloide Aguda/tratamiento farmacológico
5.
J Cachexia Sarcopenia Muscle ; 14(3): 1569-1582, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37127348

RESUMEN

BACKGROUND: The aryl hydrocarbon receptor (AHR) is expressed in the intestine and liver, where it has pleiotropic functions and target genes. This study aims to explore the potential implication of AHR in cancer cachexia, an inflammatory and metabolic syndrome contributing to cancer death. Specifically, we tested the hypothesis that targeting AHR can alleviate cachectic features, particularly through the gut-liver axis. METHODS: AHR pathways were explored in multiple tissues from four experimental mouse models of cancer cachexia (C26, BaF3, MC38 and APCMin/+ ) and from non-cachectic mice (sham-injected mice and non-cachexia-inducing [NC26] tumour-bearing mice), as well as in liver biopsies from cancer patients. Cachectic mice were treated with an AHR agonist (6-formylindolo(3,2-b)carbazole [FICZ]) or an antibody neutralizing interleukin-6 (IL-6). Key mechanisms were validated in vitro on HepG2 cells. RESULTS: AHR activation, reflected by the expression of Cyp1a1 and Cyp1a2, two major AHR target genes, was deeply reduced in all models (C26 and BaF3, P < 0.001; MC38 and APCMin/+ , P < 0.05) independently of anorexia. This reduction occurred early in the liver (P < 0.001; before the onset of cachexia), compared to the ileum and skeletal muscle (P < 0.01; pre-cachexia stage), and was intrinsically related to cachexia (C26 vs. NC26, P < 0.001). We demonstrate a differential modulation of AHR activation in the liver (through the IL-6/hypoxia-inducing factor 1α pathway) compared to the ileum (attributed to the decreased levels of indolic AHR ligands, P < 0.001), and the muscle. In cachectic mice, FICZ treatment reduced hepatic inflammation: expression of cytokines (Ccl2, P = 0.005; Cxcl2, P = 0.018; Il1b, P = 0.088) with similar trends at the protein levels, expression of genes involved in the acute-phase response (Apcs, P = 0.040; Saa1, P = 0.002; Saa2, P = 0.039; Alb, P = 0.003), macrophage activation (Cd68, P = 0.038) and extracellular matrix remodelling (Fga, P = 0.008; Pcolce, P = 0.025; Timp1, P = 0.003). We observed a decrease in blood glucose in cachectic mice (P < 0.0001), which was also improved by FICZ treatment (P = 0.026) through hepatic transcriptional promotion of a key marker of gluconeogenesis, namely, G6pc (C26 vs. C26 + FICZ, P = 0.029). Strikingly, these benefits on glycaemic disorders occurred independently of an amelioration of the gut barrier dysfunction. In cancer patients, the hepatic expression of G6pc was correlated to Cyp1a1 (Spearman's ρ = 0.52, P = 0.089) and Cyp1a2 (Spearman's ρ = 0.67, P = 0.020). CONCLUSIONS: With this set of studies, we demonstrate that impairment of AHR signalling contributes to hepatic inflammatory and metabolic disorders characterizing cancer cachexia, paving the way for innovative therapeutic strategies in this context.


Asunto(s)
Interleucina-6 , Neoplasias , Ratones , Animales , Citocromo P-450 CYP1A2 , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Neoplasias/metabolismo
6.
J Cachexia Sarcopenia Muscle ; 12(2): 456-475, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33599103

RESUMEN

BACKGROUND: Cancer cachexia is a multifactorial syndrome characterized by multiple metabolic dysfunctions. Besides the muscle, other organs such as the liver and the gut microbiota may also contribute to this syndrome. Indeed, the gut microbiota, an important regulator of the host metabolism, is altered in the C26 preclinical model of cancer cachexia. Interventions targeting the gut microbiota have shown benefits, but mechanisms underlying the host-microbiota crosstalk in this context are still poorly understood. METHODS: To explore this crosstalk, we combined proton nuclear magnetic resonance (1 H-NMR) metabolomics in multiple compartments with 16S rDNA sequencing. These analyses were complemented by molecular and biochemical analyses, as well as hepatic transcriptomics. RESULTS: 1 H-NMR revealed major changes between control (CT) and cachectic (C26) mice in the four analysed compartments (i.e. caecal content, portal vein, liver, and vena cava). More specifically, glucose metabolism pathways in the C26 model were altered with a reduction in glycolysis and gluconeogenesis and an activation of the hexosamine pathway, arguing against the existence of a Cori cycle in this model. In parallel, amino acid uptake by the liver, with an up to four-fold accumulation of nine amino acids (q-value <0.05), was mainly used for acute phase response proteins synthesis rather than to fuel the tricarboxylic acid cycle and gluconeogenesis. We also identified a 35% reduction in hepatic carnitine levels (q-value <0.05) and a lower activation of the phosphatidylcholine pathway as potential contributors to the hepatic steatosis present in this model. Our work also reveals a reduction of different beneficial intestinal bacterial activities in cancer cachexia. We found decreased levels of two short-chain fatty acids, acetate and butyrate (72% and 88% reduction in C26 caecal content; q-value <0.001), and a reduction in aromatic amino acid metabolites, which may contribute to the altered intestinal homeostasis in these mice. A member of the Ruminococcaceae family (ASV 2) was identified as the main bacterium responsible for the drop in butyrate. Finally, we report a two-fold intestinal transit acceleration (P-value <0.001) as a key factor shaping the gut microbiota composition and activity in cancer cachexia, which together lead to a faecal loss of proteins and amino acids. CONCLUSIONS: Our work highlights new metabolic pathways potentially involved in cancer cachexia and further supports the interest of exploring the gut microbiota composition and activity, as well as intestinal transit, in cancer patients with and without cachexia.


Asunto(s)
Caquexia , Enfermedades Intestinales , Hepatopatías , Neoplasias , Animales , Caquexia/etiología , Humanos , Enfermedades Intestinales/etiología , Hígado , Hepatopatías/etiología , Metabolómica , Metagenómica , Ratones , Neoplasias/complicaciones
7.
J Cachexia Sarcopenia Muscle ; 12(1): 70-90, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33350058

RESUMEN

BACKGROUND: Cancer cachexia is a debilitating metabolic syndrome contributing to cancer death. Organs other than the muscle may contribute to the pathogenesis of cancer cachexia. This work explores new mechanisms underlying hepatic alterations in cancer cachexia. METHODS: We used transcriptomics to reveal the hepatic gene expression profile in the colon carcinoma 26 cachectic mouse model. We performed bile acid, tissue mRNA, histological, biochemical, and western blot analyses. Two interventional studies were performed using a neutralizing interleukin 6 antibody and a bile acid sequestrant, cholestyramine. Our findings were evaluated in a cohort of 94 colorectal cancer patients with or without cachexia (43/51). RESULTS: In colon carcinoma 26 cachectic mice, we discovered alterations in five inflammatory pathways as well as in other pathways, including bile acid metabolism, fatty acid metabolism, and xenobiotic metabolism (normalized enrichment scores of -1.97, -2.16, and -1.34, respectively; all Padj < 0.05). The hepatobiliary transport system was deeply impaired in cachectic mice, leading to increased systemic and hepatic bile acid levels (+1512 ± 511.6 pmol/mg, P = 0.01) and increased hepatic inflammatory cytokines and neutrophil recruitment to the liver of cachectic mice (+43.36 ± 16.01 neutrophils per square millimetre, P = 0.001). Adaptive mechanisms were set up to counteract this bile acid accumulation by repressing bile acid synthesis and by enhancing alternative routes of basolateral bile acid efflux. Targeting bile acids using cholestyramine reduced hepatic inflammation, without affecting the hepatobiliary transporters (e.g. tumour necrosis factor α signalling via NFκB and inflammatory response pathways, normalized enrichment scores of -1.44 and -1.36, all Padj < 0.05). Reducing interleukin 6 levels counteracted the change in expression of genes involved in the hepatobiliary transport, bile acid synthesis, and inflammation. Serum bile acid levels were increased in cachectic vs. non-cachectic cancer patients (e.g. total bile acids, +5.409 ± 1.834 µM, P = 0.026) and were strongly correlated to systemic inflammation (taurochenodeoxycholic acid and C-reactive protein: ρ = 0.36, Padj = 0.017). CONCLUSIONS: We show alterations in bile acid metabolism and hepatobiliary secretion in cancer cachexia. In this context, we demonstrate the contribution of systemic inflammation to the impairment of the hepatobiliary transport system and the role played by bile acids in the hepatic inflammation. This work paves the way to a better understanding of the role of the liver in cancer cachexia.


Asunto(s)
Caquexia , Colestasis , Inflamación , Neoplasias , Animales , Caquexia/etiología , Colestasis/etiología , Citocinas , Humanos , Inflamación/complicaciones , Ratones , Neoplasias/complicaciones
8.
Sci Rep ; 9(1): 14150, 2019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31578395

RESUMEN

The vascular dysfunction is the primary event in the occurrence of cardio-vascular risk, and no treatment exists until now. We tested for the first time the hypothesis that chitin-glucan (CG) - an insoluble fibre with prebiotic properties- and polyphenol-rich pomegranate peel extract (PPE) can improve endothelial and inflammatory disorders in a mouse model of cardiovascular disease (CVD), namely by modulating the gut microbiota. Male Apolipoprotein E knock-out (ApoE-/-) mice fed a high fat (HF) diet developed a significant endothelial dysfunction attested by atherosclerotic plaques and increasing abundance of caveolin-1 in aorta. The supplementation with CG + PPE in the HF diet reduced inflammatory markers both in the liver and in the visceral adipose tissue together with a reduction of hepatic triglycerides. In addition, it increased the activating form of endothelial NO-synthase in mesenteric arteries and the heme-nitrosylated haemoglobin (Hb-NO) blood levels as compared with HF fed ApoE-/- mice, suggesting a higher capacity of mesenteric arteries to produce nitric oxide (NO). This study allows to pinpoint gut bacteria, namely Lactobacillus and Alistipes, that could be implicated in the management of endothelial and inflammatory dysfunctions associated with CVD, and to unravel the role of nutrition in the modulation of those bacteria.


Asunto(s)
Antiinflamatorios/farmacología , Aterosclerosis/prevención & control , Endotelio Vascular/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Polifenoles/farmacología , Polisacáridos/farmacología , Granada (Fruta)/química , Animales , Antiinflamatorios/uso terapéutico , Aorta/metabolismo , Aorta/patología , Apolipoproteínas E/genética , Aterosclerosis/etiología , Aterosclerosis/microbiología , Bacteroidetes/efectos de los fármacos , Bacteroidetes/patogenicidad , Caveolina 1/metabolismo , Dieta Alta en Grasa/efectos adversos , Lactobacillus/efectos de los fármacos , Lactobacillus/patogenicidad , Masculino , Arterias Mesentéricas/metabolismo , Arterias Mesentéricas/patología , Ratones , Óxido Nítrico Sintasa de Tipo III/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Polifenoles/uso terapéutico , Polisacáridos/uso terapéutico
9.
Mol Nutr Food Res ; 63(4): e1801078, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30628158

RESUMEN

SCOPE: Enhanced adiposity and metabolic inflammation are major features of obesity associated with altered gut microbiota and intestinal barrier. How these metabolic outcomes can be impacted by milk polar lipids (MPL), naturally containing 25% of sphingomyelin, is investigated in mice fed a mixed high-fat (HF) diet . METHODS AND RESULTS: Male C57Bl/6 mice receive a HF-diet devoid of MPL (21% fat, mainly palm oil, in chow), or supplemented with 1.1% or 1.6% of MPL (HF-MPL1; HF-MPL2) via a total-lipid extract from butterserum concentrate for 8 weeks. HF-MPL2 mice gain less weight versus HF (p < 0.01). Diets do not impact plasma markers of inflammation but in the liver, HF-MPL2 tends to decrease hepatic gene expression of macrophage marker F4/80 versus HF-MPL1 (p = 0.06). Colonic crypt depth is the maximum in HF-MPL2 (p < 0.05). In cecal microbiota, HF-MPL1 increases Bifidobacterium animalis versus HF (p < 0.05). HF-MPL2 decreases Lactobacillus reuteri (p < 0.05), which correlates negatively with the fecal loss of milk sphingomyelin-specific fatty acids (p < 0.05). CONCLUSION: In mice fed a mixed HF diet, MPL can limit HF-induced body weight gain and modulate gut physiology and the abundance in microbiota of bacteria of metabolic interest. This supports further exploration of how residual unabsorbed lipids reaching the colon can impact HF-induced metabolic disorders.


Asunto(s)
Ácidos Grasos/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Lípidos/farmacología , Leche/química , Animales , Dieta Alta en Grasa , Ácidos Grasos/análisis , Heces , Absorción Intestinal , Lípidos/administración & dosificación , Lípidos/análisis , Lípidos/química , Hígado/efectos de los fármacos , Hígado/metabolismo , Macrófagos/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Esfingomielinas/farmacología , Aumento de Peso/efectos de los fármacos
10.
Sci Rep ; 8(1): 12321, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-30120320

RESUMEN

Cancer cachexia is a complex multi-organ syndrome characterized by body weight loss, weakness, muscle atrophy and fat depletion. With a prevalence of 1 million people in Europe and only limited therapeutic options, there is a high medical need for new approaches to treat cachexia. Our latest results highlighted microbial dysbiosis, characterized by a bloom in Enterobacteriaceae and altered gut barrier function in preclinical models of cancer cachexia. They also demonstrated the potential of targeting the gut microbial dysbiosis in this pathology. However, the exact mechanisms underlying the gut microbiota-host crosstalk in cancer cachexia remain elusive. In this set of studies, we identified Klebsiella oxytoca as one of the main Enterobacteriaceae species increased in cancer cachexia and we demonstrated that this bacteria acts as a gut pathobiont by altering gut barrier function in cachectic mice. Moreover, we propose a conceptual framework for the lower colonization resistance to K. oxytoca in cancer cachexia that involves altered host gut epithelial metabolism and host-derived nitrate boosting the growth of the gut pathobiont. This set of studies constitutes a strong progression in the field of gut microbiota in cancer cachexia, by dissecting the mechanism of emergence of one bacterium, K. oxytoca, and establishing its role as a gut pathobiont in this severe disease.


Asunto(s)
Caquexia/microbiología , Caquexia/patología , Klebsiella oxytoca/patogenicidad , Neoplasias/microbiología , Neoplasias/patología , Animales , Línea Celular Tumoral , Microbioma Gastrointestinal/fisiología , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/patología , Enfermedades Intestinales/microbiología , Enfermedades Intestinales/patología , Masculino , Ratones
11.
Oncotarget ; 9(26): 18224-18238, 2018 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-29719601

RESUMEN

Intestinal disorders often occur in cancer patients, in association with body weight loss, and this alteration is commonly attributed to the chemotherapy. Here, using a mouse model of cancer cachexia induced by ectopic transplantation of C26 cancer cells, we discovered a profound alteration in the gut functions (gut permeability, epithelial turnover, gut immunity, microbial dysbiosis) independently of any chemotherapy. These alterations occurred independently of anorexia and were driven by interleukin 6. Gut dysfunction was found to be resistant to treatments with an anti-inflammatory bacterium (Faecalibacterium prausnitzii) or with gut peptides involved in intestinal cell renewal (teduglutide, a glucagon-like peptide 2 analogue). The translational value of our findings was evaluated in 152 colorectal and lung cancer patients with or without cachexia. The serum level of the lipopolysaccharide-binding protein, often presented as a reflection of the bacterial antigen load, was not only increased in cachectic mice and cancer patients, but also strongly correlated with the serum IL-6 level and predictive of death and cachexia occurrence in these patients. Altogether, our data highlight profound alterations of the intestinal homeostasis in cancer cachexia occurring independently of any chemotherapy and food intake reduction, with potential relevance in humans. In addition, we point out the lipopolysaccharide-binding protein as a new biomarker of cancer cachexia related to gut dysbiosis.

12.
Nutr Diabetes ; 8(1): 15, 2018 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-29549311

RESUMEN

BACKGROUND: Non-digestible carbohydrates present in cereals such as fructans and arabinoxylans represent promising prebiotic nutrients to prevent the development of obesity and related metabolic disorders. OBJECTIVE AND DESIGN: The aim of this study was to determine the corrective effects of wheat bran-derived arabinoxylan oligosaccharides in obese mice fed a western diet (WD). WD was given for 4 weeks before wheat bran extract (WBE) supplementation (5%) for an additional 4 weeks, whereas a control group received the standard diet. RESULTS: Bifidogenic effect of WBE was evidenced by an induction of both Bifidobacterium animalis and Bifidobacterium pseudolongum in the caecal content. WBE supplementation normalised WD-induced fat-mass expansion, steatosis, hypercholesterolemia, hyperleptinemia, hyperglycemia and hyperinsulinemia reaching the values of control mice. The reduced glucose-dependent insulinotropic polypeptide (GIP) release observed in WD + WBE mice may be a protective mechanism in terms of reducing adipose tissue storage, hepatic steatosis and glucose homoeostasis. CONCLUSION: We found that WBE completely abolished WD-induced metabolic disorders. Those results might be useful to take into account nutritional advices to treat obesity and related metabolic disorders such as type 2 diabetes, hypercholesterolaemia and fatty liver diseases when obesity was already established.


Asunto(s)
Bifidobacterium/efectos de los fármacos , Dieta Occidental/efectos adversos , Enfermedades Metabólicas/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Oligosacáridos/uso terapéutico , Triticum/química , Xilanos/uso terapéutico , Tejido Adiposo/metabolismo , Animales , Bifidobacterium/crecimiento & desarrollo , Glucemia/metabolismo , Ciego/microbiología , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/microbiología , Fibras de la Dieta , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Hígado Graso/microbiología , Polipéptido Inhibidor Gástrico/sangre , Hipercolesterolemia/sangre , Hipercolesterolemia/tratamiento farmacológico , Hipercolesterolemia/microbiología , Hiperglucemia/sangre , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/microbiología , Hiperinsulinismo/sangre , Hiperinsulinismo/tratamiento farmacológico , Hiperinsulinismo/microbiología , Leptina/sangre , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Enfermedades Metabólicas/etiología , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/microbiología , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/complicaciones , Obesidad/metabolismo , Obesidad/microbiología , Oligosacáridos/farmacología , Prebióticos , Xilanos/farmacología
13.
PLoS One ; 13(2): e0192447, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29389988

RESUMEN

SCOPE: Conjugated linoleic acids are linoleic acid isomers found in the diet that can also be produced through bacterial metabolism of polyunsaturated fatty acids. Our objective was to evaluate the contribution of fatty acid metabolites produced from polyunsaturated fatty acids by the gut microbiota in vivo to regulation of hepatic lipid metabolism and steatosis. METHODS AND RESULTS: In mice with depleted n-3 polyunsaturated fatty acids, we observed an accumulation of trans-11,trans-13 CLA and cis-9,cis-11 conjugated linoleic acids in the liver tissue that were associated with an increased triglyceride content and expression of lipogenic genes. We used an in vitro model to evaluate the impact of these two conjugated linoleic acids on hepatic lipid metabolism. In HepG2 cells, we observed that only trans-11,trans-13 conjugated linoleic acids recapitulated triglyceride accumulation and increased lipogenic gene expression, which is a phenomenon that may implicate the nuclear factors sterol regulatory element binding protein 1c (SREBP-1c) and carbohydrate-responsive element-binding protein (ChREBP). CONCLUSION: The trans-11,trans-13 conjugated linoleic acids can stimulate hepatic lipogenesis, which supports the conclusion that gut microbiota and related metabolites should be considered in the treatment of non-alcoholic liver disease.


Asunto(s)
Hígado Graso/inducido químicamente , Ácidos Linoleicos Conjugados/farmacología , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Células Hep G2 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/fisiología , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/fisiología , Factores de Transcripción/fisiología
14.
Br J Cancer ; 117(9): 1336-1340, 2017 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-28873082

RESUMEN

BACKGROUND: Activation of free fatty acid receptor 2 (FFAR2) by microbiota-derived metabolites (e.g., propionate) reduces leukaemic cell proliferation in vitro. This study aims to test whether Ffar2 expression per se also influences leukaemia cell growth in vivo. METHODS: Bcr-Abl-expressing BaF cells were used as a leukaemia model and the role of Ffar2 was evaluated in Balb/c mice after lentiviral shRNA transduction. RESULTS: Our data formally establish that reduced leukaemic cell proliferation is associated with increased Ffar2 expression in vivo and in vitro. Going beyond association, we point out that decreasing Ffar2 expression fosters cancer cell growth in vitro and in vivo. CONCLUSIONS: Our data demonstrate the role of Ffar2 in the control of leukaemic cell proliferation in vivo and indicate that a modulation of Ffar2 expression through nutritional tools or pharmacological agents may constitute an attractive therapeutic approach to tackle leukaemia progression in humans.


Asunto(s)
Proliferación Celular , Leucemia Experimental/patología , Receptores Acoplados a Proteínas G/fisiología , Animales , Apoptosis , Biomarcadores de Tumor/metabolismo , Femenino , Leucemia Experimental/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Células Tumorales Cultivadas
15.
J Nutr Biochem ; 49: 15-21, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28863365

RESUMEN

Fat browning has emerged as an attractive target for the treatment of obesity and related metabolic disorders. Its activation leads to increased energy expenditure and reduced adiposity, thus contributing to a better energy homeostasis. Green tea extracts (GTEs) were shown to attenuate obesity and low-grade inflammation and to induce the lipolytic pathway in the white adipose tissue (WAT) of mice fed a high-fat diet. The aim of the present study was to determine whether the antiobesity effect of an extract from green tea leaves was associated with the activation of browning in the WAT and/or the inhibition of whitening in the brown adipose tissue (BAT) in HF-diet induced obese mice. Mice were fed a control diet or an HF diet supplemented with or without 0.5% polyphenolic GTE for 8 weeks. GTE supplementation significantly reduced HF-induced adiposity (WAT and BAT) and HF-induced inflammation in WAT. Histological analysis revealed that GTE reduced the adipocyte size in the WAT and the lipid droplet size in the BAT. Markers of browning were induced in the WAT upon GTE treatment, whereas markers of HF-induced whitening were reduced in the BAT. These results suggest that browning activation in the WAT and whitening reduction in the BAT by the GTE could participate to the improvement of metabolic and inflammatory disorders mediated by GTE upon HF diet. Our study emphasizes the importance of using GTE as a nutritional tool to activate browning and to decrease fat storage in all adipose tissues, which attenuate obesity.


Asunto(s)
Tejido Adiposo Pardo/patología , Fármacos Antiobesidad/uso terapéutico , Camellia sinensis/química , Suplementos Dietéticos , Obesidad/prevención & control , Extractos Vegetales/uso terapéutico , Hojas de la Planta/química , Adipogénesis , Tejido Adiposo Beige/inmunología , Tejido Adiposo Beige/metabolismo , Tejido Adiposo Beige/patología , Tejido Adiposo Pardo/inmunología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/inmunología , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Adiposidad , Animales , Biomarcadores/metabolismo , Tamaño de la Célula , Dieta Alta en Grasa/efectos adversos , Manipulación de Alimentos , Gotas Lipídicas/inmunología , Gotas Lipídicas/metabolismo , Gotas Lipídicas/patología , Masculino , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología , Oxidación-Reducción , Polifenoles/uso terapéutico , Distribución Aleatoria , Organismos Libres de Patógenos Específicos
16.
ISME J ; 10(6): 1456-70, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26613342

RESUMEN

Cancer cachexia is a multifactorial syndrome that includes muscle wasting and inflammation. As gut microbes influence host immunity and metabolism, we investigated the role of the gut microbiota in the therapeutic management of cancer and associated cachexia. A community-wide analysis of the caecal microbiome in two mouse models of cancer cachexia (acute leukaemia or subcutaneous transplantation of colon cancer cells) identified common microbial signatures, including decreased Lactobacillus spp. and increased Enterobacteriaceae and Parabacteroides goldsteinii/ASF 519. Building on this information, we administered a synbiotic containing inulin-type fructans and live Lactobacillus reuteri 100-23 to leukaemic mice. This treatment restored the Lactobacillus population and reduced the Enterobacteriaceae levels. It also reduced hepatic cancer cell proliferation, muscle wasting and morbidity, and prolonged survival. Administration of the synbiotic was associated with restoration of the expression of antimicrobial proteins controlling intestinal barrier function and gut immunity markers, but did not impact the portal metabolomics imprinting of energy demand. In summary, this study provided evidence that the development of cancer outside the gut can impact intestinal homeostasis and the gut microbial ecosystem and that a synbiotic intervention, by targeting some alterations of the gut microbiota, confers benefits to the host, prolonging survival and reducing cancer proliferation and cachexia.


Asunto(s)
Caquexia/microbiología , Neoplasias del Colon/microbiología , Microbioma Gastrointestinal/fisiología , Lactobacillus/fisiología , Leucemia/microbiología , Simbióticos/administración & dosificación , Enfermedad Aguda , Animales , Bacteroidetes/efectos de los fármacos , Bacteroidetes/crecimiento & desarrollo , Caquexia/terapia , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/terapia , Modelos Animales de Enfermedad , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/crecimiento & desarrollo , Femenino , Fructanos/administración & dosificación , Microbioma Gastrointestinal/efectos de los fármacos , Homeostasis , Inflamación , Intestinos/microbiología , Inulina/administración & dosificación , Lactobacillus/efectos de los fármacos , Lactobacillus/crecimiento & desarrollo , Leucemia/terapia , Metabolómica , Ratones , Ratones Endogámicos BALB C
17.
PLoS One ; 10(6): e0131009, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26098097

RESUMEN

We tested the hypothesis that changing the gut microbiota using pectic oligosaccharides (POS) or inulin (INU) differently modulates the progression of leukemia and related metabolic disorders. Mice were transplanted with Bcr-Abl-transfected proB lymphocytes mimicking leukemia and received either POS or INU in their diet (5%) for 2 weeks. Combination of pyrosequencing, PCR-DGGE and qPCR analyses of the 16S rRNA gene revealed that POS decreased microbial diversity and richness of caecal microbiota whereas it increased Bifidobacterium spp., Roseburia spp. and Bacteroides spp. (affecting specifically B. dorei) to a higher extent than INU. INU supplementation increased the portal SCFA propionate and butyrate, and decreased cancer cell invasion in the liver. POS treatment did not affect hepatic cancer cell invasion, but was more efficient than INU to decrease the metabolic alterations. Indeed, POS better than INU delayed anorexia linked to cancer progression. In addition, POS treatment increased acetate in the caecal content, changed the fatty acid profile inside adipose tissue and counteracted the induction of markers controlling ß-oxidation, thereby hampering fat mass loss. Non digestible carbohydrates with prebiotic properties may constitute a new nutritional strategy to modulate gut microbiota with positive consequences on cancer progression and associated cachexia.


Asunto(s)
Caquexia/microbiología , Ciego/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Leucemia/microbiología , Microbiota/efectos de los fármacos , Oligosacáridos/administración & dosificación , Acetatos/metabolismo , Animales , Bacteroides/efectos de los fármacos , Bifidobacterium/efectos de los fármacos , Caquexia/metabolismo , Caquexia/patología , Ciego/efectos de los fármacos , Células Cultivadas , Suplementos Dietéticos , Progresión de la Enfermedad , Microbioma Gastrointestinal/genética , Inulina/administración & dosificación , Leucemia/metabolismo , Leucemia/patología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Invasividad Neoplásica/patología , ARN Ribosómico 16S/genética
18.
Proc Natl Acad Sci U S A ; 111(42): E4485-93, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25288760

RESUMEN

Alcohol dependence has traditionally been considered a brain disorder. Alteration in the composition of the gut microbiota has recently been shown to be present in psychiatric disorders, which suggests the possibility of gut-to-brain interactions in the development of alcohol dependence. The aim of the present study was to explore whether changes in gut permeability are linked to gut-microbiota composition and activity in alcohol-dependent subjects. We also investigated whether gut dysfunction is associated with the psychological symptoms of alcohol dependence. Finally, we tested the reversibility of the biological and behavioral parameters after a short-term detoxification program. We found that some, but not all, alcohol-dependent subjects developed gut leakiness, which was associated with higher scores of depression, anxiety, and alcohol craving after 3 wk of abstinence, which may be important psychological factors of relapse. Moreover, subjects with increased gut permeability also had altered composition and activity of the gut microbiota. These results suggest the existence of a gut-brain axis in alcohol dependence, which implicates the gut microbiota as an actor in the gut barrier and in behavioral disorders. Thus, the gut microbiota seems to be a previously unidentified target in the management of alcohol dependence.


Asunto(s)
Alcoholismo/microbiología , Disbiosis/microbiología , Tracto Gastrointestinal/microbiología , Intestinos/microbiología , Permeabilidad , Adulto , Afecto , Alcoholismo/complicaciones , Ansiedad/complicaciones , Bifidobacterium , Biopsia , Depresión/complicaciones , Heces , Femenino , Humanos , Lactobacillus , Hígado/patología , Masculino , Metaboloma , Microbiota , Persona de Mediana Edad , ARN Ribosómico 16S/análisis , Compuestos Orgánicos Volátiles/análisis
19.
Br J Nutr ; 109(5): 802-9, 2013 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-22676910

RESUMEN

Pomegranate extracts have been used for centuries in traditional medicine to confer health benefits in a number of inflammatory diseases, microbial infections and cancer. Peel fruit are rich in polyphenols that exhibit antioxidant and anti-inflammatory capacities in vitro. Recent studies strongly suggest that the gut microbiota is an environmental factor to be taken into account when assessing the risk factors related to obesity. The aim of the present study was to test the prebiotic potency of a pomegranate peel extract (PPE) rich in polyphenols in a nutritional model of obesity associated with hypercholesterolaemia and inflammatory disorders. Balb/c mice were fed either a control diet or a high-fat (HF) diet with or without PPE (6 mg/d per mouse) over a period of 4 weeks. Interestingly, PPE supplementation increased caecal content weight and caecal pool of bifidobacteria. It did not significantly modify body weight gain, glycaemia, glucose tolerance and inflammatory markers measured in the serum. However, it reduced the serum level of cholesterol (total and LDL) induced by HF feeding. Furthermore, it counteracted the HF-induced expression of inflammatory markers both in the colon and the visceral adipose tissue. Together, these findings support that pomegranate constitutes a promising food in the control of atherogenic and inflammatory disorders associated with diet-induced obesity. Knowing the poor bioavailability of pomegranate polyphenols, its bifidogenic effect observed after PPE consumption suggests the involvement of the gut microbiota in the management of host metabolism by polyphenolic compounds present in pomegranate.


Asunto(s)
Hipercolesterolemia/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Lythraceae/química , Obesidad/etiología , Extractos Vegetales/administración & dosificación , Polifenoles/administración & dosificación , Animales , Bifidobacterium/crecimiento & desarrollo , Ciego/microbiología , Quimiocinas/análisis , Quimiocinas/sangre , Citocinas/análisis , Citocinas/sangre , Dieta Alta en Grasa/efectos adversos , Frutas/química , Intolerancia a la Glucosa , Hipercolesterolemia/etiología , Inflamación/etiología , Lípidos/análisis , Hígado/química , Masculino , Ratones , Ratones Endogámicos BALB C , Obesidad/fisiopatología , Peritonitis/metabolismo , Peritonitis/microbiología , Aumento de Peso/efectos de los fármacos
20.
PLoS One ; 7(6): e37971, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22761662

RESUMEN

The gut microbiota has recently been proposed as a novel component in the regulation of host homeostasis and immunity. We have assessed for the first time the role of the gut microbiota in a mouse model of leukemia (transplantation of BaF3 cells containing ectopic expression of Bcr-Abl), characterized at the final stage by a loss of fat mass, muscle atrophy, anorexia and inflammation. The gut microbial 16S rDNA analysis, using PCR-Denaturating Gradient Gel Electrophoresis and quantitative PCR, reveals a dysbiosis and a selective modulation of Lactobacillus spp. (decrease of L. reuteri and L. johnsonii/gasseri in favor of L. murinus/animalis) in the BaF3 mice compared to the controls. The restoration of Lactobacillus species by oral supplementation with L. reuteri 100-23 and L. gasseri 311476 reduced the expression of atrophy markers (Atrogin-1, MuRF1, LC3, Cathepsin L) in the gastrocnemius and in the tibialis, a phenomenon correlated with a decrease of inflammatory cytokines (interleukin-6, monocyte chemoattractant protein-1, interleukin-4, granulocyte colony-stimulating factor, quantified by multiplex immuno-assay). These positive effects are strain- and/or species-specific since L. acidophilus NCFM supplementation does not impact on muscle atrophy markers and systemic inflammation. Altogether, these results suggest that the gut microbiota could constitute a novel therapeutic target in the management of leukemia-associated inflammation and related disorders in the muscle.


Asunto(s)
Modelos Animales de Enfermedad , Mediadores de Inflamación/metabolismo , Inflamación/prevención & control , Lactobacillus/fisiología , Leucemia Experimental/complicaciones , Atrofia Muscular/prevención & control , Enfermedad Aguda , Animales , Células Cultivadas , Suplementos Dietéticos , Femenino , Proteínas de Fusión bcr-abl/genética , Tracto Gastrointestinal/microbiología , Inflamación/etiología , Leucemia Experimental/genética , Leucemia Experimental/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/microbiología , Neoplasias Hepáticas/patología , Metagenoma , Ratones , Ratones Endogámicos BALB C , Atrofia Muscular/etiología , Células Precursoras de Linfocitos B/trasplante , Neoplasias del Bazo/metabolismo , Neoplasias del Bazo/microbiología , Neoplasias del Bazo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA