Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Pharm Biomed Anal ; 244: 116126, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38581931

RESUMEN

Polydopamine (PDA) is an insoluble biopolymer with a dark brown-black color that forms through the autoxidation of dopamine. Because of its outstanding biocompatibility and durability, PDA holds enormous promise for various applications, both in the biomedical and non-medical domains. To ensure human safety, protect health, and minimize environmental impacts, the assessment of PDA toxicity is important. In this study, metabolomics and lipidomics assessed the impact of acute PDA exposure on Caenorhabditis elegans (C. elegans). The findings revealed a pronounced perturbation in the metabolome and lipidome of C. elegans at the L4 stage following 24 hours of exposure to 100 µg/mL PDA. The changes in lipid composition varied based on lipid classes. Increased lipid classes included lysophosphatidylethanolamine, triacylglycerides, and fatty acids, while decreased species involved in several sub-classes of glycerophospholipids and sphingolipids. Besides, we detected 37 significantly affected metabolites in the positive and 8 in the negative ion modes due to exposure to PDA in C. elegans. The metabolites most impacted by PDA exposure were associated with purine metabolism, biosynthesis of valine, leucine, and isoleucine; aminoacyl-tRNA biosynthesis; and cysteine and methionine metabolism, along with pantothenate and CoA biosynthesis; the citrate cycle (TCA cycle); and beta-alanine metabolism. In conclusion, PDA exposure may intricately influence the metabolome and lipidome of C. elegans. The combined application of metabolomics and lipidomics offers additional insights into the metabolic perturbations involved in PDA-induced biological effects and presents potential biomarkers for the assessment of PDA safety.


Asunto(s)
Caenorhabditis elegans , Indoles , Lipidómica , Metaboloma , Metabolómica , Polímeros , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/efectos de los fármacos , Animales , Polímeros/metabolismo , Indoles/metabolismo , Metabolómica/métodos , Lipidómica/métodos , Metaboloma/efectos de los fármacos , Lípidos , Metabolismo de los Lípidos/efectos de los fármacos
2.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37765061

RESUMEN

Little is known about the chemical and biological profiles of Dicranopteris linearis and Psychotria adenophylla. No previous studies have investigated alpha-glucosidase inhibition using extracts from D. linearis and P. adenophylla. In this paper, bioactive-guided isolation procedures were applied to the plants D. linearis and P. adenophylla based on alpha-glucosidase inhibition. From the most active fractions, 20 compounds (DL1-DL13 and PA1-PA7) were isolated. The chemical structures were elucidated using spectroscopic data and compared with those available in the literature. These compounds were evaluated for alpha-glucosidase inhibition, while a molecular docking study was performed to elucidate the mechanisms involved. Consequently, D. linearis and P. adenophylla might serve as a good potential for developing new antidiabetic preparations.

4.
Saudi Pharm J ; 30(9): 1301-1314, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36249935

RESUMEN

Vitex negundo L. (V. negundo) is one of the important medicinal and anticancer enhancer herbs. This plant is commonly used in the preparation of traditional drugs to treat numerous diseases. Inspired by the medicinal properties of this plant, the current study aimed to investigate antiproliferative potential and the primary molecular mechanisms of the apoptotic induction against human HepG2 and MCF-7 cell lines, by pure compounds isolated from targeted fractions of V. negundo which were characterized by NMR, FTIR and HRMS analysis and identified as artemetin (FLV1), vitexicarpin (FLV2), and penduletin (FLV3) compounds. The FLV1, FLV2, and FLV3 compounds were evaluated for the antiproliferative potential against HepG2 and MCF-7 cell lines by cell viability assay and exhibited IC50 values of 2.3, 23.9 and 5.6 µM and 3.9, 25.8, and 6.4 µM, respectively. In addition, those compounds increased the level of reactive oxygen species production, induced cell death occurred via apoptosis, demonstrated by Annexin V-staining cells, contributed significantly to DNA damage, and led to the activation of caspase3/caspase8 pathways.Additionally, molecular docking was also conducted to rationalize the cancer cells inhibitory and to evaluate the ability of the FLV1, FLV2, and FLV3 compounds to be developed as good drug candidates for cancers treatment.

5.
Molecules ; 27(8)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35458771

RESUMEN

α-Glucosidase plays a role in hydrolyzing complex carbohydrates into glucose, which is easily absorbed, causing postprandial hyperglycemia. Inhibition of α-glucosidase is therefore an ideal approach to preventing this condition. A novel polyprenylated benzoylphloroglucinol, which we named schomburgkianone I (1), was isolated from the fruit of Garcinia schomburgkiana, along with an already-reported compound, guttiferone K (2). The structures of the two compounds were determined using NMR and HRESIMS analysis, and comparisons were made with previous studies. Compounds 1 and 2 exhibited potent α-glucosidase inhibition (IC50s of 21.2 and 34.8 µM, respectively), outperforming the acarbose positive control. Compound 1 produced wide zones of inhibition against Staphylococcus aureus and Enterococcus faecium (of 21 and 20 mm, respectively), compared with the 19 and 20 mm zones of compound 2, at a concentration of 50 µg/mL. The MIC value of compound 1 against S. aureus was 13.32 µM. An in silico molecular docking model suggested that both compounds are potent inhibitors of enzyme α-glucosidase and are therefore leading candidates as therapies for diabetes mellitus.


Asunto(s)
Antiinfecciosos , Garcinia , Frutas , Garcinia/química , Inhibidores de Glicósido Hidrolasas/química , Simulación del Acoplamiento Molecular , Staphylococcus aureus , alfa-Glucosidasas
6.
BMC Complement Med Ther ; 21(1): 87, 2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33750378

RESUMEN

BACKGROUND: Lung cancer is one of the leading causes of death worldwide due to its strong proliferative and metastatic capabilities. The suppression of these aggressive behaviors is of interest in anticancer drug research and discovery. In recent years, many plants have been explored in order to discover new bioactive secondary metabolites to treat cancers or enhance treatment efficiency. Aspiletrein A (AA) is a steroidal saponin isolated from the whole endemic species Aspidistra letreae in Vietnam. Previously, elucidation of the structure of AA and screening of its cytotoxic activity against several cancer cell lines were reported. However, the antitumor activities and mechanisms of action have not yet been elucidated. In this study, we demonstrated the anti-proliferative, anti-migrative and anti-invasive effects of AA on H460, H23 and A549 human lung cancer cells. METHODS: MTT, wound healing and Transwell invasion assays were used to evaluate the anti-proliferation, anti-migration and anti-invasion effects of AA, respectively. Moreover, the inhibitory effect of AA on the activity of protein kinase B (Akt), a central mediator of cancer properties, and apoptotic regulators in the Bcl-2 family proteins were investigated by Western blotting. RESULTS: AA exhibits antimetastatic effects in human lung cancer cells through the inhibition of the pAkt/Akt signaling pathway, which in turn resulted in a significant inhibitory effect of AA on the migration and invasion of the examined lung cancer cells. CONCLUSIONS: Aspiletrein A may be a potent inhibitor of protein kinase B (Akt). Hence, AA could be further explored as a potential antimetastatic lead compound.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Asparagaceae/química , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Saponinas/farmacología , Células A549 , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Estructura Molecular , Fitoquímicos/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos
7.
Molecules ; 24(24)2019 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-31861213

RESUMEN

Cisplatin is a platinum-based anticancer agent used for treating a wide range of solid cancers. One of the side effects of this drug is its severe nephrotoxicity, limiting the safe dose of cisplatin. Therefore, many natural products have been studied and applied to attenuate the toxicity of this compound. In this study, we found that steamed Vietnamese ginseng (Panax vietnamensis) could significantly reduce the kidney damage of cisplatin in an in vitro model using porcine proximal tubular LLC-PK1 kidney cells. From processed ginseng under optimized conditions (120 °C, 12 h), we isolated seven compounds (20(R,S)-ginsenoside Rh2, 20(R,S)-ginsenoside Rg3, ginsenoside Rk1, ginsenoside-Rg5, and ocotillol genin) that showed kidney-protective potential against cisplatin toxicity. By comparing the 50% recovery concentration (RC50), the R form of ginsenoside, Rh2 and Rg3, had RC50 values of 6.67 ± 0.42 µM and 8.39 ± 0.3 µM, respectively, while the S forms of ginsenoside, Rh2 and Rg3, and Rk1, had weaker protective effects, with RC50 ranging from 46.15 to 88.4 µM. G-Rg5 and ocotillol, the typical saponin of Vietnamese ginseng, had the highest RC50 (180.83 ± 33.27; 226.19 ± 66.16, respectively). Our results suggest that processed Vietnamese gingseng (PVG), as well as those compounds, has the potential to improve kidney damage due to cisplatin toxicity.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Riñón/efectos de los fármacos , Panax/química , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Fraccionamiento Químico/métodos , Relación Dosis-Respuesta a Droga , Concentración 50 Inhibidora , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Sustancias Protectoras/química , Sustancias Protectoras/aislamiento & purificación
9.
Cancer Lett ; 412: 297-307, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29061506

RESUMEN

Cancer stem-like cells (CSCs) contribute to tumor recurrence and chemoresistance. Hence, strategies targeting CSCs are crucial for effective anticancer therapies. Here, we demonstrate the capacities of the non-saponin fraction of Panax ginseng and its active principle panaxynol to inhibit Hsp90 function and viability of both non-CSC and CSC populations of NSCLC in vitro and in vivo. Panaxynol inhibited the sphere forming ability of NSCLC CSCs at nanomolar concentrations, and micromolar concentrations of panaxynol suppressed the viability of NSCLC cells (non-CSCs) and their sublines carrying acquired chemoresistance with minimal effect on normal cells derived from various organs. Orally administered panaxynol significantly reduced lung tumorigenesis in KrasG12D/+ transgenic mice and mice carrying NSCLC xenografts without detectable toxicity. Mechanistically, panaxynol disrupted Hsp90 function by binding to the N-terminal and C-terminal ATP-binding pockets of Hsp90 without increasing Hsp70 expression. These data suggest the potential of panaxynol as a natural Hsp90 inhibitor targeting both the N-terminal and C-terminal of Hsp90 with limited toxicities.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Diinos/farmacología , Alcoholes Grasos/farmacología , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Neoplasias Pulmonares/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Animales , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proteínas HSP90 de Choque Térmico/fisiología , Humanos , Neoplasias Pulmonares/patología , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA