Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Acta Pharmacol Sin ; 45(8): 1533-1555, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38622288

RESUMEN

Cancer cells largely rely on aerobic glycolysis or the Warburg effect to generate essential biomolecules and energy for their rapid growth. The key modulators in glycolysis including glucose transporters and enzymes, e.g. hexokinase 2, enolase 1, pyruvate kinase M2, lactate dehydrogenase A, play indispensable roles in glucose uptake, glucose consumption, ATP generation, lactate production, etc. Transcriptional regulation and post-translational modifications (PTMs) of these critical modulators are important for signal transduction and metabolic reprogramming in the glycolytic pathway, which can provide energy advantages to cancer cell growth. In this review we recapitulate the recent advances in research on glycolytic modulators of cancer cells and analyze the strategies targeting these vital modulators including small-molecule inhibitors and microRNAs (miRNAs) for targeted cancer therapy. We focus on the regulation of the glycolytic pathway at the transcription level (e.g., hypoxia-inducible factor 1, c-MYC, p53, sine oculis homeobox homolog 1, N6-methyladenosine modification) and PTMs (including phosphorylation, methylation, acetylation, ubiquitination, etc.) of the key regulators in these processes. This review will provide a comprehensive understanding of the regulation of the key modulators in the glycolytic pathway and might shed light on the targeted cancer therapy at different molecular levels.


Asunto(s)
Glucólisis , Neoplasias , Procesamiento Proteico-Postraduccional , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/genética , Glucólisis/efectos de los fármacos , Animales , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Transcripción Genética , Terapia Molecular Dirigida/métodos , Regulación Neoplásica de la Expresión Génica
2.
J Appl Toxicol ; 44(8): 1139-1152, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38581191

RESUMEN

Isobavachalcone (IBC) is a flavonoid component of the traditional Chinese medicine Psoraleae Fructus, with a range of pharmacological properties. However, IBC causes some hepatotoxicity, and the mechanism of toxicity is unclear. The purpose of this paper was to investigate the possible mechanism of toxicity of IBC on HepG2 cells and zebrafish embryos. The results showed that exposure to IBC increased zebrafish embryo mortality and decreased hatchability. Meanwhile, IBC induced liver injury and increased expression of ALT and AST activity. Further studies showed that IBC caused the increase of ROS and MDA the decrease of CAT, GSH, and GSH-Px; the increase of Fe2+ content; and the changes of ferroptosis related genes (acsl4, gpx4, and xct) and iron storage related genes (tf, fth, and fpn) in zebrafish embryos. Through in vitro verification, it was found that IBC also caused oxidative stress and increased Fe2+ content in HepG2 cells. IBC caused depolarization of mitochondrial membrane potential (MMP) and reduction of mitochondrial ATP, as well as altered expression of ACSl4, SLC7A11, GPX4, and FTH1 proteins. Treatment of HepG2 cells with ferrostatin-1 could reverse the effect of IBC. Targeting the System Xc--GSH-GPX4 pathway of ferroptosis and preventing oxidative stress damage might offer a theoretical foundation for practical therapy and prevention of IBC-induced hepatotoxicity.


Asunto(s)
Chalconas , Ferroptosis , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Transducción de Señal , Pez Cebra , Pez Cebra/embriología , Animales , Humanos , Chalconas/toxicidad , Chalconas/farmacología , Ferroptosis/efectos de los fármacos , Células Hep G2 , Transducción de Señal/efectos de los fármacos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Embrión no Mamífero/efectos de los fármacos , Glutatión/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Estrés Oxidativo/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos
3.
Nutr Cancer ; 75(9): 1752-1767, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37469169

RESUMEN

Objective: This study aimed to summarize the current evidence-based approach to perioperative enteral nutritional (EN) program for gastric cancer (GC) surgery and to develop a staged and operable EN management scheme based on the evidence to provide clinical guidance for improving perioperative EN management in patients with GC.Methods: First, we synthesized expert consensuses, systematic reviews, and guidelines related to GC patients who had undergone surgery, based on a review of the literature and expert meetings. Subsequently, after carefully evaluating and selecting relevant EN management data, we created a preliminary draft of a perioperative EN program. Following Delphi expert consultations, the final version of the perioperative EN program was constructed after revision.Results: After two rounds of consultation, the expert opinions tended to be consistent. The expert positive coefficient was 1.00, and the expert authority coefficient was 0.90. After the second round of consultation, the coefficient of variation of the importance score ranged from 0.05 to 0.20, and the coefficient of variation of the feasibility score ranged from 0.09 to 0.23. The Kendall harmony coefficients were 0.338 and 0.392, and the difference between them was statistically significant (p < 0.001). The final practice plan includes 4 first-level, 16 s-level, and 64 third-level items.Conclusions: The perioperative EN program constructed in this study is comprehensive in content, feasible, and evidence-based, and can provide insights for clinical improvement.


Asunto(s)
Procedimientos Quirúrgicos del Sistema Digestivo , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/cirugía , Nutrición Enteral
4.
J Appl Toxicol ; 43(3): 373-386, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36062847

RESUMEN

Borneol is an example of traditional Chinese medicine widely used in Asia. There are different isomers of chiral borneol in the market, but its toxicity and effects need further study. In this study, we used zebrafish embryos to examine the effects of exposure to three isomers of borneol [(-)-borneol, (+)-borneol, and isoborneol] on heart development and the association with Na+ /K+ -ATPase from 4 h post-fertilization (4 hpf). The results showed that the three isomers of borneol increased mortality and decreased hatching rate when the zebrafish embryo developed to 72 hpf. All three isomers of borneol (0.01-1.0 mM) significantly reduced heart rate from 48 to 120 hpf and reduced the expression of genes related to Ca2+ -ATPase (cacna1ab and cacna1da) and Na+ /K+ -ATPase (atp1b2b, atp1a3b, and atp1a2). At the same time, the three isomers of borneol significantly reduced the activities of Ca2+ -ATPase and Na+ /K+ -ATPase at 0.1 to 1.0 mM. (+)-Borneol caused the most significant reduction (p < 0.05), followed by isoborneol and (-)-borneol. Na+ /K+ -ATPase was mainly expressed in otic vesicles and protonephridium. All three isomers of borneol reduced Na+ /K+ -ATPase mRNA expression, but isoborneol was the most significant (p < 0.01). Our results indicated that (+)-borneol was the least toxic of the three isomers while the isoborneol showed the most substantial toxic effect, closely related to effects on Na+ /K+ -ATPase.


Asunto(s)
Cardiotoxicidad , Pez Cebra , Animales , Pez Cebra/metabolismo , Canfanos/toxicidad , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
5.
Stem Cell Res Ther ; 13(1): 239, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672803

RESUMEN

BACKGROUND: Endothelial cells are located in the inner lumen of blood and lymphatic vessels and exhibit the capacity to form new vessel branches from existing vessels through a process called angiogenesis. This process is energy intensive and tightly regulated. Glycolysis is the main energy source for angiogenesis. Retinoic acid (RA) is an active metabolite of vitamin A and exerts biological effects through its receptor retinoic acid receptor (RAR). In the clinic, RA is used to treat acne vulgaris and acute promyelocytic leukemia. Emerging evidence suggests that RA is involved in the formation of the vasculature; however, its effect on endothelial cell angiogenesis and metabolism is unclear. METHODS: Our study was designed to clarify the abovementioned effect with human embryonic stem cell-derived endothelial cells (hESC-ECs) employed as a cell model. RESULTS: We found that RA inhibits angiogenesis, as manifested by decreased proliferation, migration and sprouting activity. RNA sequencing revealed general suppression of glycometabolism in hESC-ECs in response to RA, consistent with the decreased glycolytic activity and glucose uptake. After screening glycometabolism-related genes, we found that fructose-1,6-bisphosphatase 1 (FBP1), a key rate-limiting enzyme in gluconeogenesis, was significantly upregulated after RA treatment. After silencing or pharmacological inhibition of FBP1 in hESC-ECs, the capacity for angiogenesis was enhanced, and the inhibitory effect of RA was reversed. ChIP-PCR demonstrated that FBP1 is a target gene of RAR. When hESC-ECs were treated with the RAR inhibitor BMS493, FBP1 expression was decreased and the effect of RA on angiogenesis was partially blocked. CONCLUSIONS: The inhibitory role of RA in glycometabolism and angiogenesis is RAR/FBP1 dependent, and FBP1 may be a novel therapeutic target for pathological angiogenesis.


Asunto(s)
Células Madre Embrionarias Humanas , Tretinoina , Células Endoteliales/metabolismo , Fructosa , Gluconeogénesis/genética , Células Madre Embrionarias Humanas/metabolismo , Humanos , Neovascularización Patológica , Tretinoina/farmacología
6.
IET Syst Biol ; 14(5): 297-306, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33095751

RESUMEN

Extensive experimental evidence has been demonstrated that the dynamics of CDK1-APC feedback loop play crucial roles in regulating cell cycle processes, but the dynamical mechanisms underlying the regulation of this loop are still not completely understood. Here, the authors systematically investigated the stability and bifurcation criteria for a delayed CDK1-APC feedback loop. They showed that the maximum reaction rate of CDK1 inactivation by APC can drive sustained oscillations of CDK1 activity ([inline-formula removed]) and APC activity ([inline-formula removed]), and the amplitude of these oscillations is increasing with the increase of the reaction rate over a wide range; a certain range of the self-activation rate for CDK1 is also significant for generating these oscillations, for too high or too low rates the oscillations cannot be generated. Moreover, they derived the sufficient conditions to determine the stability and Hopf bifurcations, and found that the sum of time delays required for activating CDK1 and APC can induce [inline-formula removed] and [inline-formula removed] to be oscillatory, even when the [inline-formula removed] and [inline-formula removed] settle in a definite stable steady state. Furthermore, they presented an explicit algorithm for the properties of periodic oscillations. Finally, numerical simulations have been presented to justify the validity of theoretical analysis.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Proteína Quinasa CDC2/metabolismo , Retroalimentación Fisiológica , Modelos Biológicos
7.
Stem Cell Res Ther ; 10(1): 167, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31196181

RESUMEN

BACKGROUND: Ischemic heart diseases are still a threat to human health. Human pluripotent stem cell-based transplantation exhibits great promise in cardiovascular disease therapy, including heart ischemia. The purpose of this study was to compare the efficacy of human embryonic stem cell-derived cardiomyocyte (ESC-CM) therapy in two heart ischemia models, namely, permanent ischemia (PI) and myocardial ischemia reperfusion (IR). METHODS: Human embryonic stem cell-derived cardiomyocytes were differentiated from engineered human embryonic stem cells (ESC-Rep) carrying green fluorescent protein (GFP), herpes simplex virus-1 thymidine kinase (HSVtk), and firefly luciferase (Fluc). Two different heart ischemia models were generated by the ligation of the left anterior descending artery (LAD), and ESC-Rep-derived cardiomyocytes (ESC-Rep-CMs) were transplanted into the mouse hearts. Cardiac function was analyzed to evaluate the outcomes of ESC-Rep-CM transplantation. Bioluminescence signal analysis was performed to assess the cell engraftment. Finally, the inflammation response was analyzed by real-time PCR and ELISA. RESULTS: Cardiac function was significantly improved in the PI group with ESC-Rep-CM injection compared to the PBS-injected control, as indicated by increased left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS), as well as reduced fibrotic area. However, minimal improvement by ESC-Rep-CM injection was detected in the IR mouse model. We observed similar engraftment efficiency between PI and IR groups after ESC-Rep-CM injection. However, the restricted inflammation was observed after the injection of ESC-Rep-CMs in the PI group, but not in the IR group. Transplantation of ESC-Rep-CMs can partially preserve the heart function via regulating the inflammation response in the PI model, while little improvement of cardiac function in the IR model may be due to the less dynamic inflammation response by the mild heart damage. CONCLUSIONS: Our findings identified the anti-inflammatory effect of ESC-CMs as a possible therapeutic mechanism to improve cardiac function in the ischemic heart.


Asunto(s)
Células Madre Embrionarias Humanas/trasplante , Isquemia/terapia , Miocitos Cardíacos/trasplante , Daño por Reperfusión/terapia , Animales , Diferenciación Celular/genética , Modelos Animales de Enfermedad , Proteínas Fluorescentes Verdes/genética , Humanos , Isquemia/genética , Isquemia/patología , Luciferasas/genética , Ratones , Daño por Reperfusión/genética , Daño por Reperfusión/patología , Volumen Sistólico/genética , Timidina Quinasa/genética , Función Ventricular Izquierda/genética
8.
Stem Cell Reports ; 9(6): 1813-1824, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29173899

RESUMEN

Hepatocyte-like cells (HLCs) can be generated through directed differentiation or transdifferentiation. Employing two strategies, we generated induced pluripotent stem cell (iPSC)-HLCs and hiHeps from the same donor cell line. Both types of HLCs clustered distinctly from each other during gene expression profiling. In particular, differences existed in gene expression for phase II drug metabolism and lipid accumulation, underpinned by H3K27 acetylation status in iPSC-HLCs and hiHeps. While distinct phenotypes were achieved in vitro, both types of HLCs demonstrated similar phenotypes following transplantation into Fah-deficient mice. In conclusion, functional HLCs can be obtained from the same donor using two strategies. Global gene expression defined the differences between those populations in vitro. Importantly, both HLCs displayed partial but markedly improved hepatic function following transplantation in vivo, demonstrating plasticity and the potential for cell-based modeling in the dish and cell-based therapy in the future.


Asunto(s)
Diferenciación Celular/genética , Tratamiento Basado en Trasplante de Células y Tejidos , Hepatocitos/citología , Células Madre Pluripotentes Inducidas/citología , Animales , Línea Celular , Epigénesis Genética/genética , Regulación del Desarrollo de la Expresión Génica/genética , Hepatocitos/metabolismo , Hepatocitos/trasplante , Humanos , Células Madre Pluripotentes Inducidas/trasplante , Ratones , Donantes de Tejidos
9.
Anal Biochem ; 523: 17-23, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28137603

RESUMEN

In this paper, we developed a fluorescent aptasensor for 17ß-estradiol (E2) determination in aqueous solution using label-free E2-specific aptamer, gold nanoparticles (AuNPs) and Rhodamine B (RhoB) as sensing probe, fluorescent quencher and fluorescent indicator respectively. In the absence of E2, AuNPs were wrapped by E2 aptamer and maintained dispersed in NaCl solution basically. These dispersed AuNPs could effectively impair the originally high fluorescence of RhoB. Contrarily, in the presence of E2, E2 aptamer could specifically combine with E2 to form E2-aptamer complex, so the AuNPs were released by E2 aptamer and aggregated under the influence of NaCl. The aggregated AuNPs have a weak influence on RhoB fluorescence. Therefore, the E2 concentration can be determined by the change of fluorescence intensity of RhoB. This fluorescent assay has a detection limit as low as 0.48 nM, a linear range from 0.48 to 200 nM, and high selectivity over other disrupting chemicals. It was applied to determine E2 in water samples with recoveries in the range of 94.3-111.7%. The fluorescent aptasensor holds great potential for E2 detection in environmental water samples.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Estradiol/análisis , Fluorescencia , Oro/química , Nanopartículas del Metal/química , Rodaminas/química , Colorantes Fluorescentes/química , Humanos , Límite de Detección
10.
Anal Biochem ; 514: 2-7, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27615801

RESUMEN

This paper proposes an aptasensor for progesterone (P4) detection in human serum and urine based on the aggregating behavior of gold nanoparticles (AuNPs) controlled by the interactions among P4-binding aptamer, target P4 and cationic surfactant hexadecyltrimethylammonium bromide (CTAB). The aptamer can form an aptamer-P4 complex with P4, leaving CTAB free to aggregate AuNPs in this aptasensor. Thus, the sensing solution will turn from red (520 nm) to blue (650 nm) in the presence of P4 because P4 aptamers are used up firstly owing to the formation of an aptamer-P4 complex, leaving CTAB free to aggregate AuNPs. However, in the absence of P4, CTAB combines with aptamers so that AuNPs still remain dispersed. Therefore, this assay makes it possible to detect P4 not only by absorbance measurement but also through naked eyes. By monitoring the variation of absorbance and color, a CTAB-induced colorimetric assay for P4 detection was established with a detection limit of 0.89 nM. Besides, the absorbance ratio A650/A520 has a linear correlation with the P4 concentration of 0.89-500 nM. Due to the excellent recoveries in serum and urine, this biosensor has great potential with respect to the visual and instrumental detection of P4 in biological fluids.


Asunto(s)
Técnicas Biosensibles/instrumentación , Colorimetría/métodos , Progesterona/sangre , Progesterona/orina , Aptámeros de Nucleótidos , Técnicas Biosensibles/métodos , Cetrimonio , Compuestos de Cetrimonio/química , Colorimetría/instrumentación , Oro/química , Humanos , Nanopartículas del Metal/química , Sensibilidad y Especificidad , Tensoactivos/química
11.
Cell Physiol Biochem ; 38(5): 1815-30, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27160211

RESUMEN

BACKGROUND/AIMS: To develop a suitable hepatocyte-like cell model that could be a substitute for primary hepatocytes with essential transporter expression and functions. Induced hepatocyte-like (iHep) cells directly reprogrammed from mice fibroblast cells were fully characterized. METHODS: Naïve iHep cells were transfected with nuclear hepatocyte factor 4 alpha (Hnf4α) and treated with selected small molecules. Sandwich cultured configuration was applied. The mRNA and protein expression of transporters were determined by Real Time PCR and confocal. The functional transporters were estimated by drug biliary excretion measurement. The inhibition of bile acid efflux transporters by cholestatic drugs were assessed. RESULTS: The expression and function of p-glycoprotein (P-gp), bile salt efflux pump (Bsep), multidrug resistance-associated protein 2 (Mrp2), Na+-dependent taurocholate cotransporting polypeptide (Ntcp), and organic anion transporter polypedtides (Oatps) in iHep cells were significantly improved after transfection of hepatocyte nuclear factor 4 alpha (Hnf4α) and treatment with selected inducers. In vitro intrinsic biliary clearances (CLb,int) of optimized iHep cells for rosuvastatin, methotrexate, d8-TCA (deuterium-labeled sodium taurocholate acid) and DPDPE ([D-Pen2,5] enkephalin hydrate) correlated well with that of sandwich-cultured primary mouse hepatocytes (SCMHs) (r2 = 0.984). Cholestatic drugs were evaluated and the results were compared well with primary mice hepatocytes. CONCLUSION: The optimized iHep cells expressed functional drug transporters and were comparable to primary mice hepatocytes. This study suggested direct reprogramming could provide a potential alternative to primary hepatocytes for drug candidate hepatobiliary disposition and hepatotoxicity screening.


Asunto(s)
Anticolesterolemiantes/metabolismo , Reprogramación Celular , Factor Nuclear 4 del Hepatocito/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Anticolesterolemiantes/análisis , Anticolesterolemiantes/toxicidad , Ácidos y Sales Biliares/metabolismo , Técnicas de Cultivo de Célula , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Encefalina D-Penicilamina (2,5)/análisis , Encefalina D-Penicilamina (2,5)/metabolismo , Encefalina D-Penicilamina (2,5)/toxicidad , Fibroblastos/citología , Fibroblastos/metabolismo , Expresión Génica/efectos de los fármacos , Factor Nuclear 4 del Hepatocito/genética , Hepatocitos/citología , Hepatocitos/metabolismo , Proteínas de Transporte de Membrana/genética , Metotrexato/análisis , Metotrexato/metabolismo , Metotrexato/toxicidad , Ratones , Ratones Endogámicos ICR , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Rosuvastatina Cálcica/análisis , Rosuvastatina Cálcica/metabolismo , Rosuvastatina Cálcica/toxicidad , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Simportadores/genética , Simportadores/metabolismo
12.
Cell Res ; 26(2): 206-16, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26768767

RESUMEN

Acute liver failure (ALF) is a life-threatening illness. The extracorporeal cell-based bioartificial liver (BAL) system could bridge liver transplantation and facilitate liver regeneration for ALF patients by providing metabolic detoxification and synthetic functions. Previous BAL systems, based on hepatoma cells and non-human hepatocytes, achieved limited clinical advances, largely due to poor hepatic functions, cumbersome preparation or safety concerns of these cells. We previously generated human functional hepatocytes by lineage conversion (hiHeps). Here, by improving functional maturity of hiHeps and producing hiHeps at clinical scales (3 billion cells), we developed a hiHep-based BAL system (hiHep-BAL). In a porcine ALF model, hiHep-BAL treatment restored liver functions, corrected blood levels of ammonia and bilirubin, and prolonged survival. Importantly, human albumin and α-1-antitrypsin were detectable in hiHep-BAL-treated ALF pigs. Moreover, hiHep-BAL treatment led to attenuated liver damage, resolved inflammation and enhanced liver regeneration. Our findings indicate a promising clinical application of the hiHep-BAL system.


Asunto(s)
Hepatocitos/metabolismo , Hepatocitos/fisiología , Fallo Hepático Agudo/metabolismo , Fallo Hepático Agudo/fisiopatología , Albúminas/metabolismo , Amoníaco/metabolismo , Animales , Bilirrubina/metabolismo , Línea Celular , Humanos , Hígado Artificial , Porcinos
13.
Xenobiotica ; 45(12): 1138-46, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26068524

RESUMEN

1. The purpose of this study was to investigate the mechanism of hepatic uptake of berberine. Berberine accumulation in hepatocytes was found to be highly dependent on active uptake, which could not be explained by liver organic cation transporter (OCT) alone. 2. Our studies indicated that berberine uptake was significantly suppressed by rifampicin, cyclosporine A and glycyrrhizic acid, which act as specific inhibitors of different Oatp isoforms (Oatp1a1, Oatp1a4 and Oatp1b2) in rat hepatocytes. The combination of OCT and OATP inhibitors further reduced berberine accumulation in both rat and human hepatocytes. The uptake of berberine could be increased in human HEK293-OATP1B3 but not in OATP1B1-transfected HEK 293 cells. 3. Rifampicin could reduce the berberine liver extraction ratio (ER) and double its concentration in the effluent in isolated rat livers. Further in vivo study indicated that berberine plasma exposure could be significantly increased by co-administration of the OATP inhibitor rifampicin or the substrate rosuvastatin. 4. In conclusion, this study demonstrated that both OCT and OATP contribute to the accumulation of berberine in the liver. OATPs may have important roles in berberine liver disposition and potential clinically relevant drug--drug interactions.


Asunto(s)
Berberina/farmacocinética , Hígado/metabolismo , Transportadores de Anión Orgánico/metabolismo , Animales , Expresión Génica/efectos de los fármacos , Células HEK293 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Técnicas In Vitro , Hígado/efectos de los fármacos , Masculino , Transportadores de Anión Orgánico/antagonistas & inhibidores , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico Sodio-Independiente/antagonistas & inhibidores , Transportadores de Anión Orgánico Sodio-Independiente/genética , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley , Rifampin/farmacología , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos
14.
Oncol Lett ; 9(2): 515-521, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25624882

RESUMEN

Histone deacetylase (HDAC) inhibitors are becoming a novel and promising class of antineoplastic agents that have been used for cancer therapy in the clinic. Two HDAC inhibitors, vorinostat and romidepsin, have been approved by the Food and Drug Administration to treat T-cell lymphoma. Nevertheless, similar to common anticancer drugs, HDAC inhibitors have been found to induce multidrug resistance (MDR), which is an obstacle for the success of chemotherapy. The most common cause of MDR is considered to be the increased expression of adenosine triphosphate binding cassette (ABC) transporters. Numerous studies have identified that the upregulation of ABC transporters is often observed following treatment with HDAC inhibitors, particularly the increased expression of P-glycoprotein, which leads to drug efflux, reduces intracellular drug concentration and induces MDR. The present review summarizes the key ABC transporters involved in MDR following various HDAC inhibitor treatments in a range of cancer cell lines and also explored the potential mechanisms that result in MDR, including the effect of nuclear receptors, which are the upstream regulatory factors of ABC transporters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA