Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Vis Exp ; (207)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38856223

RESUMEN

8-Oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) base is the predominant form of commonly observed DNA oxidative damage. DNA impairment profoundly impacts gene expression and serves as a pivotal factor in stimulating neurodegenerative disorders, cancer, and aging. Therefore, precise quantification of 8-oxoG has clinical significance in the investigation of DNA damage detection methodologies. However, at present, the existing approaches for 8-oxoG detection pose challenges in terms of convenience, expediency, affordability, and heightened sensitivity. We employed the sandwich enzyme-linked immunosorbent assay (ELISA) technique, a highly efficient and swift colorimetric method, to detect variations in 8-oxo-dG content in MCF-7 cell samples stimulated with different concentrations of hydrogen peroxide (H2O2). We determined the concentration of H2O2 that induced oxidative damage in MCF-7 cells by detecting its IC50 value in MCF-7 cells. Subsequently, we treated MCF-7 cells with 0, 0.25, and 0.75 mM H2O2 for 12 h and extracted 8-oxo-dG from the cells. Finally, the samples were subjected to ELISA. Following a series of steps, including plate spreading, washing, incubation, color development, termination of the reaction, and data collection, we successfully detected changes in the 8-oxo-dG content in MCF-7 cells induced by H2O2. Through such endeavors, we aim to establish a method to evaluate the degree of DNA oxidative damage within cell samples and, in doing so, advance the development of more expedient and convenient approaches for DNA damage detection. This endeavor is poised to make a meaningful contribution to the exploration of associative analyses between DNA oxidative damage and various domains, including clinical research on diseases and the detection of toxic substances.


Asunto(s)
8-Hidroxi-2'-Desoxicoguanosina , Daño del ADN , Ensayo de Inmunoadsorción Enzimática , Peróxido de Hidrógeno , Estrés Oxidativo , Humanos , Daño del ADN/efectos de los fármacos , Células MCF-7 , Ensayo de Inmunoadsorción Enzimática/métodos , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo/efectos de los fármacos , Desoxiguanosina/análogos & derivados , Desoxiguanosina/análisis
2.
Artículo en Inglés | MEDLINE | ID: mdl-37948546

RESUMEN

DNA damage is a modification in the structure of DNA under the influence of endogenous or exogenous factors. DNA damage can cause different types of diseases and is closely related to genetic mutations, cancer, and aging. The cause of the corresponding reaction process is essential for the study of related cancers and other genetically related diseases. Therefore, it is essential to gain a deeper understanding of the various types of DNA damage. This paper provides a comprehensive review of recent advances in the types of DNA damage and associated reaction processes, including damage to DNA bases, nucleotides, and strands, as well as the biological implications of the damage.

3.
Steroids ; 175: 108910, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34461103

RESUMEN

This study investigated the changes in the prostate of high-fat diet (HFD)-fed mice with insulin resistance (IR) and explored the possible mechanisms of the effects of 8-week treadmill aerobic exercise on prostatic hyperplasia in insulin-resistant mice through the IGF-1/IGF-1R/ERK/AKT signalling pathway. Results showed IR in mice caused an increase in prostate-related indicators, such as prostate weight (PW) and prostate volume (PV), resulting in prostatic hyperplasia. The area of the glandular lumen and the height of the glandular epithelium in mice with IR were increased, which indicating that it caused prostatic hyperplasia through epithelial cell proliferation. In addition, the level of IGF-1 in serum and the expression of IGF-1R, ERK and AKT in prostate tissue of high-fat diet induced IR mice increased significantly, which might be related to the proliferation of prostate cells. However, aerobic exercise lowered the blood sugar, serum insulin and IGF-1; inhibited the combination of IGF-1 and IGF-1R on the prostate; down-regulated the expression of IGF-1R, ERK and AKT proteins; and then suppressed the expression of downstream proliferation genes, thereby achieving the purpose of inhibiting the proliferation of prostate epithelial cells. In conclusion. Eight weeks of aerobic exercise might improve the prostate hyperplasia in mice via down-regulating the serum insulin and IGF-1, thus enhancing the insulin sensitivity of insulin-resistant mice and regulating the IGF-1/IGF-1R/ERK/AKT signalling pathway by inhibiting the expression of IGF-1R, ERK and AKT in the prostate tissue. However, this exercise had no significant effect on PV, PW and prostate index (PI).


Asunto(s)
Hiperplasia Prostática , Humanos , Masculino
4.
Cell Mol Biol (Noisy-le-grand) ; 65(1): 94-99, 2019 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-30782300

RESUMEN

The present study was carried out to evolve an effective treatment strategy for chronic obstructive pulmonary disease (COPD). Astaxanthin (AS) is abundantly present in red pigments of crustaceans, and has also been proven to have considerable biological activities. The anti-inflammatory effect of AS was evaluated in lipopolysaccharide (LPS)-exposed RAW264.7 macrophages. It was found that AS markedly inhibited elevation of NO and pro-inflammatory mediators. Moreover, it downregulated iNOS in LPS-stimulated RAW264.7 cells, suppressed the release of pro-inflammatory cytokines, and decreased ROS levels in mice exposed to cigarette smoke (CS) and LPS. These results imply that AS has therapeutic and prophylactic potential in the airway inflammatory response associated with COPD.


Asunto(s)
Hemo-Oxigenasa 1/biosíntesis , Neumonía/tratamiento farmacológico , Neumonía/etiología , Fumar/efectos adversos , Animales , Líquido del Lavado Bronquioalveolar , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Modelos Animales de Enfermedad , Inducción Enzimática/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Lipopolisacáridos , Pulmón/enzimología , Pulmón/patología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Neumonía/genética , Neumonía/patología , Células RAW 264.7 , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Xantófilas/química , Xantófilas/farmacología , Xantófilas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA