Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38731983

RESUMEN

Acne vulgaris is a prevalent skin disorder affecting many young individuals, marked by keratinization, inflammation, seborrhea, and colonization by Cutibacterium acnes (C. acnes). Ellagitannins, known for their antibacterial and anti-inflammatory properties, have not been widely studied for their anti-acne effects. Chestnut (Castanea sativa Mill., C. sativa), a rich ellagitannin source, including castalagin whose acne-related bioactivity was previously unexplored, was investigated in this study. The research assessed the effect of C. sativa leaf extract and castalagin on human keratinocytes (HaCaT) infected with C. acnes, finding that both inhibited IL-8 and IL-6 release at concentrations below 25 µg/mL. The action mechanism was linked to NF-κB inhibition, without AP-1 involvement. Furthermore, the extract displayed anti-biofilm properties and reduced CK-10 expression, indicating a potential role in mitigating inflammation, bacterial colonization, and keratosis. Castalagin's bioactivity mirrored the extract's effects, notably in IL-8 inhibition, NF-κB inhibition, and biofilm formation at low µM levels. Other polyphenols, such as flavonol glycosides identified via LC-MS, might also contribute to the extract's biological activities. This study is the first to explore ellagitannins' potential in treating acne, offering insights for developing chestnut-based anti-acne treatments pending future in vivo studies.


Asunto(s)
Acné Vulgar , Fagaceae , Taninos Hidrolizables , Extractos Vegetales , Hojas de la Planta , Humanos , Taninos Hidrolizables/farmacología , Fagaceae/química , Acné Vulgar/microbiología , Acné Vulgar/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/química , Hojas de la Planta/química , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , FN-kappa B/metabolismo , Células HaCaT , Propionibacterium acnes/efectos de los fármacos , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Interleucina-8/metabolismo
2.
J Mol Biol ; 434(17): 167663, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35659507

RESUMEN

The tumor protein 53 (p53) is involved in transcription-dependent and independent processes. Several p53 variants related to cancer have been found to impact protein stability. Other variants, on the contrary, might have little impact on structural stability and have local or long-range effects on the p53 interactome. Our group previously identified a loop in the DNA binding domain (DBD) of p53 (residues 207-213) which can recruit different interactors. Experimental structures of p53 in complex with other proteins strengthen the importance of this interface for protein-protein interactions. We here characterized with structure-based approaches somatic and germline variants of p53 which could have a marginal effect in terms of stability and act locally or allosterically on the region 207-213 with consequences on the cytosolic functions of this protein. To this goal, we studied 1132 variants in the p53 DBD with structure-based approaches, accounting also for protein dynamics. We focused on variants predicted with marginal effects on structural stability. We then investigated each of these variants for their impact on DNA binding, dimerization of the p53 DBD, and intramolecular contacts with the 207-213 region. Furthermore, we identified variants that could modulate long-range the conformation of the region 207-213 using a coarse-grain model for allostery and all-atom molecular dynamics simulations. Our predictions have been further validated using enhanced sampling methods for 15 variants. The methodologies used in this study could be more broadly applied to other p53 variants or cases where conformational changes of loop regions are essential in the function of disease-related proteins.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Regulación Alostérica/genética , ADN/química , Humanos , Simulación de Dinámica Molecular , Mutación , Neoplasias/genética , Unión Proteica , Dominios Proteicos , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA