Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Histochem Cell Biol ; 153(5): 367-377, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32125512

RESUMEN

A major limitation in the pharmacological treatment of clinically detectable primary cancers and their metastases is their limited accessibility to anti-cancer drugs (cytostatics, inhibitory antibodies, small-molecule inhibitors) critically impairing therapeutic efficacies. Investigations on the tissue distribution of such drugs are rare and have only been based on fresh frozen material or methanol-fixed cell culture cells so far. In this paper, we expand the detection of cisplatin-induced DNA adducts and anthracyclines as well as therapeutic antibodies to routinely prepared formalin-fixed, paraffin-embedded sections (FFPE). Using pre-treated cell lines prepared as FFPE samples comparable to tissues from routine analysis, we demonstrate that our method allows for the detection of chemotherapeutics (anthracyclines by autofluorescence, cisplatin by immune detection of DNA adducts) as well as therapeutic antibodies. This methodology thus allows for analyzing archival FFPE tissues, as demonstrated here for the detection of cisplatin, doxorubicin and trastuzumab in FFPE sections of tumor xenografts from drug-treated mice. Analyzing human tumor samples, this will lead to new insights into the tissue penetration of drugs.


Asunto(s)
Antineoplásicos/análisis , Cetuximab/análisis , Cisplatino/análisis , Doxorrubicina/análisis , Neoplasias/patología , Adhesión en Parafina , Rituximab/análisis , Trastuzumab/análisis , Antineoplásicos/uso terapéutico , Cetuximab/uso terapéutico , Cisplatino/uso terapéutico , Doxorrubicina/uso terapéutico , Formaldehído/química , Humanos , Neoplasias/tratamiento farmacológico , Rituximab/uso terapéutico , Fijación del Tejido , Trastuzumab/uso terapéutico , Células Tumorales Cultivadas
2.
Anal Chem ; 90(20): 12253-12260, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30215510

RESUMEN

Fluorescence-guided surgery (FGS) has been established as a powerful technique for glioblastoma resection. After oral application of the prodrug 5-aminolevulinic acid (5-ALA), protoporphyrin IX (PpIX) is formed as an intermediate of the heme-biosynthesis cascade and accumulates within the tumor. By intraoperative fluorescence microscopy, the specific PpIX fluorescence can be used to differentiate the tumor from healthy brain tissue. To investigate possible limitations of fluorescence diagnosis, the complementary use of molecular and elemental mass-spectrometry imaging (MSI) is presented. Matrix-assisted laser-desorption-ionization mass spectrometry (MALDI-MS) is used to examine the distribution of PpIX and heme b in human brain tumors. MALDI-MS/MS imaging is performed to validate MS data and improve the signal-to-noise ratio (S/N). Comparing the imaging results with histological evaluation, increased PpIX accumulation in areas of high tumor-cell density is observed. Heme b accumulation are only found in areas of blood vessels and hemorrhage, confirming the hampered transformation from PpIX to heme b in glioblastoma tissue. Investigation of non-neoplastic brain tissue and glioblastoma resected without external 5-ALA administration as control samples with true-negative fluorescence verified the absence of PpIX accumulation. Analysis of necrotic tumor tissue and gliosarcoma, one rare type of glioma appearing nonfluorescent during FGS, as case examples with false-negative-fluorescence diagnosis, revealed the absence of significant amounts of PpIX, indicating an impairment of PpIX formation. Molecular analysis is complemented by quantitative laser ablation-inductively coupled plasma (LA-ICP) MSI correlating heme b and Fe distribution. Mathematical pixel-by-pixel correlation of molecular and elemental data revealed a positive correlation with heteroscedasticity for the spatially resolved heme b signal intensities and Fe concentrations.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Fluorescencia , Glioblastoma/diagnóstico por imagen , Imagen Óptica , Ácido Aminolevulínico/química , Ácido Aminolevulínico/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/cirugía , Glioblastoma/metabolismo , Glioblastoma/cirugía , Humanos , Terapia por Láser , Espectrometría de Masas , Microscopía Fluorescente , Conformación Molecular , Profármacos/química , Profármacos/metabolismo , Protoporfirinas/química , Protoporfirinas/metabolismo
3.
Contrast Media Mol Imaging ; 2017: 4035721, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29097921

RESUMEN

Secondary lymphedema accompanied with strong restrictions in quality of life is still major side effects in cancer therapy. Therefore, dedicated diagnostic tools and further investigation of the lymphatic system are crucial to improve lymphedema therapy. In this pilot study, a method for quantitative analysis of the lymphatic system in a rat model by laser ablation (LA) with inductively coupled plasma mass spectrometry imaging (ICP-MSI) is presented. As a possible lymph marker, thulium(III)(1R,4R,7R,10R)-α,α',α'',α'''-tetramethyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (Tm-DOTMA) is introduced and compared to the clinically used magnetic resonance imaging contrast agent gadolinium(III)2,2',2''-(10-((2R,3S)-1,3,4-trihydroxybutan-2-yl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate (Gd-DO3A-butrol). Gadobutrol functioned as standard contrast media in MRI lymphangiography to detect lymphatic flow qualitatively. Thus, Tm-DOTMA was investigated as lymphatic marker to detect lymphatic flow quantitatively. Both contrast agents were successfully used to visualize the lymphatic flow in successive lymph nodes in LA-ICP-MS due to lower limits of detection compared to MRI. Furthermore, the distribution of contrast agents by multicolored imaging showed accumulation in specific areas (sectors) of the lymph nodes after application of contrast agents in different areas.


Asunto(s)
Medios de Contraste/normas , Sistema Linfático/diagnóstico por imagen , Linfedema/diagnóstico por imagen , Espectrometría de Masas/métodos , Animales , Medios de Contraste/química , Gadolinio , Linfedema/etiología , Imagen por Resonancia Magnética/métodos , Compuestos Organometálicos , Proyectos Piloto , Ratas , Talio
4.
Anal Chim Acta ; 938: 106-13, 2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27619092

RESUMEN

Limited drug penetration into tumor tissue is a significant factor to the effectiveness of cancer therapy. Tumor spheroids, a 3D cell culture model system, can be used to study drug penetration for pharmaceutical development. In this study, a method for quantitative bioimaging of platinum group elements by laser ablation (LA) coupled to inductively coupled plasma mass spectrometry (ICP-MS) is presented. Different matrix-matched standards were used to develop a quantitative LA-ICP-MS method with high spatial resolution. To investigate drug penetration, tumor spheroids were incubated with platinum complexes (Pt(II)acetylacetonate, cisplatin) and the palladium tagged photosensitizer 5,10,15,20-tetrakis(3-hydroxyphenyl)porphyrin (mTHPP). Distribution and accumulation of the pharmaceuticals were determined with the developed method.


Asunto(s)
Neoplasias/química , Compuestos de Platino/análisis , Línea Celular Tumoral , Humanos , Espectrometría de Masas/métodos , Neoplasias/metabolismo , Paladio/química , Paladio/farmacocinética
5.
Anal Chem ; 87(20): 10392-6, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26424032

RESUMEN

The uptake of mercury species in the model organism Drosophila melanogaster was investigated by elemental bioimaging using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS). The mercury distribution in Drosophila melanogaster was analyzed for the three species mercury(II) chloride, methylmercury chloride, and thimerosal after intoxication. A respective analytical method was developed and applied to the analysis of the entire Drosophila melanogaster first, before a particular focus was directed to the cerebral areas of larvae and adult flies. For quantification of mercury, matrix-matched standards based on gelatin were prepared. Challenges of spatially dissolved mercury determination, namely, strong evaporation issues of the analytes and an inhomogeneous distribution of mercury in the standards due to interactions with cysteine containing proteins of the gelatin were successfully addressed by complexation with meso-2,3-dimercaptosuccinic acid (DMSA). No mercury was detected in the cerebral region for mercury(II) chloride, whereas both organic species showed the ability to cross the blood-brain barrier. Quantitatively, the mercury level in the brain exceeded the fed concentration indicating mercury enrichment, which was approximately 3 times higher for methylmercury chloride than for thimerosal.


Asunto(s)
Drosophila melanogaster/metabolismo , Mercurio/análisis , Mercurio/metabolismo , Animales , Drosophila melanogaster/química , Rayos Láser , Espectrometría de Masas
6.
Metallomics ; 6(1): 77-81, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24311052

RESUMEN

In this study, the cellular uptake of the second generation photosensitizer 5,10,15,20-tetrakis(3-hydroxyphenyl)porphyrin (mTHPP) was investigated using laser ablation coupled to inductively coupled plasma mass spectrometry (LA-ICP-MS) at a spatial resolution of 10 µm. To achieve high sensitivity, the photosensitizer was tagged with palladium. As a tumor model system, a 3D cell culture of the TKF-1 cell line was used. These tumor spheroids were incubated with the Pd-tagged photosensitizer embedded in poly(lactic-co-glycolic acid) (PLGA) nanoparticles to investigate the efficiency of nanoparticle based drug delivery. An accumulation of the drug in the first cell layers of the tumor spheroid was observed. In the case of nanoparticle based drug delivery, a significantly more homogeneous distribution of the photosensitizer was achieved, compared to tumor spheroids incubated with the dissolved photosensitizer without the nanoparticular drug delivery system. The infiltration depth of the Pd-tagged photosensitizer could not be increased with rising incubation time, which can be attributed to the adsorption of the photosensitizer onto cellular components.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/administración & dosificación , Paladio/química , Fármacos Fotosensibilizantes/administración & dosificación , Esferoides Celulares/metabolismo , Línea Celular Tumoral , Humanos , Ácido Láctico/química , Espectrometría de Masas/métodos , Imagen Molecular/métodos , Estructura Molecular , Nanopartículas/química , Neoplasias/metabolismo , Neoplasias/patología , Compuestos Organometálicos/química , Compuestos Organometálicos/metabolismo , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/metabolismo , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Porfirinas/administración & dosificación , Porfirinas/química , Porfirinas/metabolismo , Reproducibilidad de los Resultados , Esferoides Celulares/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA