Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Tipo de estudio
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4696, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824133

RESUMEN

Age-related microangiopathy, also known as small vessel disease (SVD), causes damage to the brain, retina, liver, and kidney. Based on the DNA damage theory of aging, we reasoned that genomic instability may underlie an SVD caused by dominant C-terminal variants in TREX1, the most abundant 3'-5' DNA exonuclease in mammals. C-terminal TREX1 variants cause an adult-onset SVD known as retinal vasculopathy with cerebral leukoencephalopathy (RVCL or RVCL-S). In RVCL, an aberrant, C-terminally truncated TREX1 mislocalizes to the nucleus due to deletion of its ER-anchoring domain. Since RVCL pathology mimics that of radiation injury, we reasoned that nuclear TREX1 would cause DNA damage. Here, we show that RVCL-associated TREX1 variants trigger DNA damage in humans, mice, and Drosophila, and that cells expressing RVCL mutant TREX1 are more vulnerable to DNA damage induced by chemotherapy and cytokines that up-regulate TREX1, leading to depletion of TREX1-high cells in RVCL mice. RVCL-associated TREX1 mutants inhibit homology-directed repair (HDR), causing DNA deletions and vulnerablility to PARP inhibitors. In women with RVCL, we observe early-onset breast cancer, similar to patients with BRCA1/2 variants. Our results provide a mechanistic basis linking aberrant TREX1 activity to the DNA damage theory of aging, premature senescence, and microvascular disease.


Asunto(s)
Daño del ADN , Exodesoxirribonucleasas , Fosfoproteínas , Animales , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Humanos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ratones , Reparación del ADN por Recombinación , Fenotipo , Mutación , Drosophila/genética , Envejecimiento/genética , Envejecimiento/metabolismo , Femenino , Drosophila melanogaster/genética , Masculino , Enfermedades de la Retina , Enfermedades Vasculares , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias
2.
Eur J Med Genet ; 66(8): 104804, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37369308

RESUMEN

DExH-box helicases are involved in unwinding of RNA and DNA. Among the 16 DExH-box genes, monoallelic variants of DHX16, DHX30, DHX34, and DHX37 are known to be associated with neurodevelopmental disorders. In particular, DHX30 is well established as a causative gene for neurodevelopmental disorders. Germline variants of DHX9, the closest homolog of DHX30, have not been reported until now as being associated with congenital disorders in humans, except that one de novo heterozygous variant, p.(Arg1052Gln) of the gene was identified during comprehensive screening in a patient with autism; unfortunately, the phenotypic details of this individual are unknown. Herein, we report a patients with a heterozygous de novo missense variant, p.(Gly414Arg) of DHX9 who presented with a short stature, intellectual disability, and ventricular non-compaction cardiomyopathy. The variant was located in the glycine codon of the ATP-binding site, G-C-G-K-T. To assess the pathogenicity of these variants, we generated transgenic Drosophila lines expressing human wild-type and mutant DHX9 proteins: 1) the mutant proteins showed aberrant localization both in the nucleus and the cytoplasm; 2) ectopic expression of wild-type protein in the visual system led to the rough eye phenotype, whereas expression of the mutant proteins had minimal effect; 3) overexpression of the wild-type protein in the retina led to a reduction in axonal numbers, whereas expression of the mutant proteins had a less pronounced effect. Furthermore, in a gene-editing experiment of Dhx9 G416 to R416, corresponding to p.(Gly414Arg) in humans, heterozygous mice showed a reduced body size, reduced emotionality, and cardiac conduction abnormality. In conclusion, we established that heterozygosity for a loss-of-function variant of DHX9 can lead to a new neurodevelopmental disorder.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Animales , Humanos , Ratones , ARN Helicasas DEAD-box/genética , Genética Humana , Discapacidad Intelectual/genética , Proteínas de Neoplasias/genética , Trastornos del Neurodesarrollo/genética , ARN/genética , ARN Helicasas
3.
Hum Mol Genet ; 31(1): 69-81, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34346499

RESUMEN

An optimal Golgi transport system is important for mammalian cells. The adenosine diphosphate (ADP) ribosylation factors (ARF) are key proteins for regulating cargo sorting at the Golgi network. In this family, ARF3 mainly works at the trans-Golgi network (TGN), and no ARF3-related phenotypes have yet been described in humans. We here report the clinical and genetic evaluations of two unrelated children with de novo pathogenic variants in the ARF3 gene: c.200A > T (p.Asp67Val) and c.296G > T (p.Arg99Leu). Although the affected individuals presented commonly with developmental delay, epilepsy and brain abnormalities, there were differences in severity, clinical course and brain lesions. In vitro subcellular localization assays revealed that the p.Arg99Leu mutant localized to Golgi apparatus, similar to the wild-type, whereas the p.Asp67Val mutant tended to show a disperse cytosolic pattern together with abnormally dispersed Golgi localization, similar to that observed in a known dominant negative variant (p.Thr31Asn). Pull-down assays revealed that the p.Asp67Val had a loss-of-function effect and the p.Arg99Leu variant had increased binding of the adaptor protein, Golgi-localized, γ-adaptin ear-containing, ARF-binding protein 1 (GGA1), supporting the gain of function. Furthermore, in vivo studies revealed that p.Asp67Val transfection led to lethality in flies. In contrast, flies expressing p.Arg99Leu had abnormal rough eye, as observed in the gain-of-function variant p.Gln71Leu. These data indicate that two ARF3 variants, the possibly loss-of-function p.Asp67Val and the gain-of-function p.Arg99Leu, both impair the Golgi transport system. Therefore, it may not be unreasonable that they showed different clinical features like diffuse brain atrophy (p.Asp67Val) and cerebellar hypoplasia (p.Arg99Leu).


Asunto(s)
Factores de Ribosilacion-ADP , Trastornos del Neurodesarrollo , Factores de Ribosilacion-ADP/genética , Factores de Ribosilacion-ADP/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Encéfalo/metabolismo , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Mamíferos/metabolismo , Trastornos del Neurodesarrollo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA