Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Chem Res Toxicol ; 37(8): 1344-1355, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39095321

RESUMEN

This study introduces a novel cheminformatic read-across approach designed to identify potential environmental obesogens, substances capable of disrupting metabolism and inducing obesity by mainly influencing nuclear hormone receptors (NRs). Leveraging real-valued two-dimensional features derived from chemical fingerprints of 8435 Tox21 compounds, cluster analysis and subsequent statistical testing revealed 385 clusters enriched with compounds associated with specific NR targets. Notably, one cluster exhibited selective enrichment in peroxisome proliferator-activated receptor γ (PPARγ) agonist activity, prominently featuring methoxy cinnamate ultraviolet (UV) filters and obesogen-related compounds. Experimental validation confirmed that 2-ethoxyethyl 4-methoxycinnamate, an organic UV filter cinoxate, could selectively bind to PPARγ (Ki = 18.0 µM), eliciting an obesogenic phenotype in human bone marrow-derived mesenchymal stem cells during adipogenic differentiation. Molecular docking and further experiments identified cinoxate as a potent PPARγ full agonist, demonstrating a preference for coactivator SRC3 recruitment. Moreover, cinoxate upregulated transcription levels of genes encoding lipid metabolic enzymes in normal human epidermal keratinocytes as primary cells exposed during clinical usage. This study provides compelling evidence for the efficacy of cheminformatic read-across analysis in prioritizing potential obesogens, showcasing its utility in unveiling cinoxate as an obesogenic PPARγ agonist.


Asunto(s)
Simulación del Acoplamiento Molecular , PPAR gamma , PPAR gamma/agonistas , PPAR gamma/metabolismo , Humanos , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Cinamatos/farmacología , Cinamatos/química , Estructura Molecular , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Protectores Solares/farmacología , Protectores Solares/química , Rayos Ultravioleta
2.
Biomol Ther (Seoul) ; 32(5): 627-634, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39091020

RESUMEN

Sesquiterpene lactones, a class of natural compounds abundant in the Asteraceae family, have gained attention owing to their diverse biological activities, and particularly their anti-proliferative effects on human cancer cells. In this study, we systematically investigated the structure-activity relationship of ten sesquiterpene lactones with the aim of elucidating the structural determinants for the STAT3 inhibition governing their anti-proliferative effects. Our findings revealed a significant correlation between the STAT3 inhibitory activity and the anti-proliferative effects of sesquiterpene lactones in MDA-MB-231 breast cancer cell lines. Among the compounds tested, alantolactone and isoalantolactone emerged as the most potent STAT3 inhibitors, highlighting their potential as candidates for anticancer drug development. Through protein-ligand docking studies, we revealed the structural basis of STAT3 inhibition by sesquiterpene lactones, emphasizing the critical role of hydrogen-bonding interactions with key residues, including Arg609, Ser611, Glu612, and Ser613, in the SH2 domain of STAT3. Furthermore, our conformational analysis revealed the decisive role of the torsion angle within the geometry-optimized structures of sesquiterpene lactones in their STAT3 inhibitory activity (R=0.80, p<0.01). These findings not only provide preclinical evidence for sesquiterpene lactones as promising phytomedicines against diseases associated with abnormal STAT3 activation, but also highlight the importance of stereochemical aspects in their activity.

3.
Eur J Med Chem ; 245(Pt 1): 114927, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36379105

RESUMEN

Adiponectin and leptin are major adipocytokines that control crosstalk between adipose tissue and other organ systems. Hypoadiponectinemia and hypoleptinemia are associated with human metabolic diseases. Compounds with adipocytokine biosynthesis-stimulating activities could be developed as therapeutics against diverse metabolic conditions. In phenotypic screening with human bone marrow mesenchymal stem cells (hBM-MSCs), (E)-4-hydroxy-3-(3-(4-hydroxy-3-methoxyphenyl)acryloyl)-6-methyl-2H-pyran-2-one (1) was identified to increase adiponectin biosynthesis during adipogenesis and simultaneously to stimulate leptin production. Using the compound 1 structure, the structure-activity relationship study was performed to discover more potent compounds stimulating both adiponectin and leptin production. (E)-3-(3-(2-fluoropyridin-4-yl)acryloyl)-4-hydroxy-6-methyl-2H-pyran-2-one (11) exhibited the most potent adiponectin (EC50, 2.87 µM) and leptin (EC50, 2.82 µM) biosynthesis-stimulating activities in hBM-MSCs. In a target identification study, compound 11 was characterized as a dual modulator binding to both peroxisome proliferator-activated receptor (PPAR) γ and glucocorticoid receptor (GR). This study provides a novel pharmacophore for PPARγ/GR dual modulators with therapeutic potential against human metabolic diseases.


Asunto(s)
Adiponectina , Leptina , Células Madre Mesenquimatosas , PPAR gamma , Piranos , Receptores de Glucocorticoides , Humanos , Adipogénesis , Adiponectina/biosíntesis , Leptina/farmacología , Leptina/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , PPAR gamma/agonistas , Piranos/química , Piranos/farmacología , Receptores de Glucocorticoides/agonistas
4.
Immunol Cell Biol ; 101(3): 216-230, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36529983

RESUMEN

Liver cirrhosis is characterized by the extensive deposition of extracellular matrix such as fibril collagen, causing dysfunction and failure of the liver. Hepatic macrophages play pivotal roles in the transition from inflammatory to restorative properties upon hepatic injury. In particular, scar-associated macrophages (SAMacs) control liver fibrosis with the representative expression of matrix metalloproteinase (MMP). However, the heterogenic SAMac population has not been well characterized yet. This study profiled heterogeneous liver macrophages using public databases of single-cell transcriptomics and found T-cell immunoglobulin and mucin containing (TIM)4- macrophages exhibited elevated expression of MMPs. Scar-associated triggering receptor expressed on myeloid cells (TREM)2 was positively correlated with MMP expression, suggesting that TREM2+ subsets exert their fibrotic role via MMPs. During the progression of diet-induced nonalcoholic steatohepatitis and drug-induced liver cirrhosis, monocyte-derived TREM2+ macrophages accumulate in the liver with the distinct expression of MMPs. A noticeable expansion of MMP- and TREM2- double positive macrophages was observed in fibrotic scar regions. Consistently, the analysis of single-cell transcriptomics for human cirrhotic livers supported the theory that TREM2+ SAMacs are strongly associated with MMPs. The results could expand the understanding of liver fibrosis and SAMac, offering potential therapeutic approaches for liver cirrhosis.


Asunto(s)
Cicatriz , Hígado , Humanos , Cicatriz/metabolismo , Cicatriz/patología , Hígado/patología , Cirrosis Hepática/patología , Macrófagos/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo
5.
ACS Med Chem Lett ; 13(7): 1131-1136, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35859875

RESUMEN

On the basis of the previously reported polypharmacological profile of truncated d-1'-homologated adenosine derivatives [J. Med. Chem.2020, 63, 16012], the l-nucleoside analogues were synthesized using computer-aided design and evaluated for biological activity. The target molecules were synthesized from d-ribose via the key intramolecular cyclization of the monotosylate and Mitsunobu condensation. The peroxisome proliferator-activated receptor (PPAR) binding activities of l-nucleoside analogue 2d (K i = 4.3 µM for PPARγ and 1.0 µM for PPARδ) were significantly improved in comparison with those of the d-nucleoside compound 1 (11.9 and 2.7 µM, respectively). In addition, the l-nucleosides showed more potent adiponectin-secretion-promoting activity than the d-nucleoside analogues.

6.
Biomol Ther (Seoul) ; 30(5): 391-398, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35790893

RESUMEN

Polyploidization is a process by which cells are induced to possess more than two sets of chromosomes. Although polyploidization is not frequent in mammals, it is closely associated with development and differentiation of specific tissues and organs. The liver is one of the mammalian organs that displays ploidy dynamics in physiological homeostasis during its development. The ratio of polyploid hepatocytes increases significantly in response to hepatic injury from aging, viral infection, iron overload, surgical resection, or metabolic overload, such as that from non-alcoholic fatty liver diseases (NAFLDs). One of the unique features of NAFLD is the marked heterogeneity of hepatocyte nuclear size, which is strongly associated with an adverse liver-related outcome, such as hepatocellular carcinoma, liver transplantation, and liver-related death. Thus, hepatic polyploidization has been suggested as a potential driver in the progression of NAFLDs that are involved in the control of the multiple pathogenicity of the diseases. However, the importance of polyploidy in diverse pathophysiological contexts remains elusive. Recently, several studies reported successful improvement of symptoms of NAFLDs by reducing pathological polyploidy or by controlling cell cycle progression in animal models, suggesting that better understanding the mechanisms of pathological hepatic polyploidy may provide insights into the treatment of hepatic disorders.

7.
Bioorg Med Chem ; 54: 116564, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34922307

RESUMEN

The upregulation of adiponectin production has been suggested as a novel strategy for the treatment of metabolic diseases. Galangin, a natural flavonoid, exhibited adiponectin synthesis-promoting activity during adipogenesis in human bone marrow mesenchymal stem cells. In target identification, galangin bound both peroxisome proliferator-activated receptor (PPAR) γ and estrogen receptor (ER) ß. Novel galangin derivatives were synthesized to improve adiponectin synthesis-promoting compounds by increasing the PPARγ activity of galangin and reducing its ERß activity, because PPARγ functions can be inhibited by ERß. Three galangin 3-benzyl-5-methylether derivatives significantly promoted adiponectin production by 2.88-, 4.47-, and 2.76-fold, respectively, compared to the effect of galangin. The most potent compound, galangin 3-benzyl-5,7-dimethylether, selectively bound to PPARγ (Ki, 1.7 µM), whereas it did not bind to ERß. Galangin 3-benzyl-5,7-dimethylether was identified as a PPARγ partial agonist in docking and pharmacological competition studies, suggesting that it may have diverse therapeutic potential in a variety of metabolic diseases.


Asunto(s)
Adiponectina/biosíntesis , Flavonoides/farmacología , Hipoglucemiantes/farmacología , PPAR gamma/agonistas , Células Cultivadas , Relación Dosis-Respuesta a Droga , Flavonoides/síntesis química , Flavonoides/química , Humanos , Hipoglucemiantes/síntesis química , Hipoglucemiantes/química , Simulación del Acoplamiento Molecular , Estructura Molecular , PPAR gamma/metabolismo , Relación Estructura-Actividad
8.
Toxicol Lett ; 355: 141-149, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34864131

RESUMEN

Octocrylene (OC) is an extensively prescribed organic ultraviolet B filter used in sunscreen products. Due to its extensive use, a significant level of OC is detected in marine and freshwater environments. Notably, the bioaccumulation of OC in aquatic biota may affect human health. In this study, the effect of OC on metabolism was investigated using the adipogenesis model of human bone marrow mesenchymal stem cells (hBM-MSCs). OC promoted adiponectin production during adipogenesis in hBM-MSCs compared to the vehicle-treated control (EC50, 29.6 µM). In target identification, OC directly bound to peroxisome proliferator-activated receptor (PPAR) γ (Ki, 37.8 µM). OC-bound PPARγ also significantly recruited nuclear receptor coactivator proteins SRC-1 (EC50, 54.1 µM) and SRC-2 (EC50, 58.6 µM). In the molecular docking simulation study, the optimal ligand-binding mode of OC suggested that OC is a PPARγ partial agonist. A competitive analysis with a PPARγ full agonist pioglitazone revealed that OC acted as a PPARγ partial agonist. OC altered the gene transcription profile of lipid-metabolism associated enzymes in normal human keratinocytes, primarily exposed human cells after the application of sunscreens. In conclusion, OC is a potential metabolic disrupting obesogen.


Asunto(s)
Acrilatos/toxicidad , Adipocitos/fisiología , Células de la Médula Ósea/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Obesidad/inducido químicamente , PPAR gamma/agonistas , Adipocitos/efectos de los fármacos , Células de la Médula Ósea/fisiología , Dominio Catalítico , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Queratinocitos/efectos de los fármacos , Metabolismo de los Lípidos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Coactivador 1 de Receptor Nuclear/genética , Coactivador 1 de Receptor Nuclear/metabolismo , Coactivador 2 del Receptor Nuclear/genética , Coactivador 2 del Receptor Nuclear/metabolismo , Conformación Proteica
9.
Pharmaceuticals (Basel) ; 14(12)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34959689

RESUMEN

The development of anticancer drugs remains challenging owing to the potential for drug resistance. The simultaneous inhibition of multiple targets involved in cancer could overcome resistance, and these agents would exhibit higher potency than single-target inhibitors. Protein kinases represent a promising target for the development of anticancer agents. As most multi-kinase inhibitors are heterocycles occupying only the hinge and hydrophobic region in the ATP binding site, we aimed to design multi-kinase inhibitors that would occupy the ribose pocket, along with the hinge and hydrophobic region, based on ATP-kinase interactions. Herein, we report the discovery of a novel 4'-thionucleoside template as a multi-kinase inhibitor with potent anticancer activity. The in vitro evaluation revealed a lead 1g (7-acetylene-7-deaza-4'-thioadenosine) with potent anticancer activity, and marked inhibition of TRKA, CK1δ, and DYRK1A/1B kinases in the kinome scan assay. We believe that these findings will pave the way for developing anticancer drugs.

10.
Biomol Ther (Seoul) ; 29(5): 465-482, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34462378

RESUMEN

Lipids, which along with carbohydrates and proteins are among the most important nutrients for the living organism, have a variety of biological functions that can be applied widely in biomedicine. A fatty acid, the most fundamental biological lipid, may be classified by length of its aliphatic chain, and the short-, medium-, and long-chain fatty acids and each have distinct biological activities with therapeutic relevance. For example, short-chain fatty acids have immune regulatory activities and could be useful against autoimmune disease; medium-chain fatty acids generate ketogenic metabolites and may be used to control seizure; and some metabolites oxidized from long-chain fatty acids could be used to treat metabolic disorders. Glycerolipids play important roles in pathological environments, such as those of cancers or metabolic disorders, and thus are regarded as a potential therapeutic target. Phospholipids represent the main building unit of the plasma membrane of cells, and play key roles in cellular signaling. Due to their physical properties, glycerophospholipids are frequently used as pharmaceutical ingredients, in addition to being potential novel drug targets for treating disease. Sphingolipids, which comprise another component of the plasma membrane, have their own distinct biological functions and have been investigated in nanotechnological applications such as drug delivery systems. Saccharolipids, which are derived from bacteria, have endotoxin effects that stimulate the immune system. Chemically modified saccharolipids might be useful for cancer immunotherapy or as vaccine adjuvants. This review will address the important biological function of several key lipids and offer critical insights into their potential therapeutic applications.

11.
Org Lett ; 23(12): 4667-4671, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34060857

RESUMEN

Psammocindoles A-C (1-3), a new class of indole alkaloids, were isolated from a Psammocinia vermis sponge. By combined spectroscopic analyses, the structures of these compounds were determined to be the indole-γ-lactams derived from three amino acid residues. In addition, an enantiomer psammocindole D (4), and the N-lactam isomers isopsammocindoles A-D (5-8) were also synthesized. These natural products and synthetic analogues were found to significantly stimulate adiponectin secretion in human bone marrow mesenchymal stem cells.


Asunto(s)
Alcaloides Indólicos/química , Lactamas/química , Células Madre Mesenquimatosas/efectos de los fármacos , Poríferos/química , Animales , Productos Biológicos , Humanos , Alcaloides Indólicos/aislamiento & purificación , Lactamas/aislamiento & purificación , Células Madre Mesenquimatosas/química , Estructura Molecular , Estereoisomerismo
12.
Sci Rep ; 11(1): 7778, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33833342

RESUMEN

Melanoma is a disease with a high recurrence rate and poor prognosis; therefore, the need for targeted therapeutics is steadily increasing. Oligodendrocyte transcription factor2 (Olig2) is a basic helix-loop-helix transcription factor that is expressed in the central nervous system during embryonic development. Olig2 is overexpressed in various malignant cell lines such as lung carcinoma, glioma and melanoma. Olig2 is known as a key transcription factor that promotes tumor growth in malignant glioma. However, the role of Olig2 in melanoma is not well characterized. We analyzed the role of Olig2 in apoptosis, migration, and invasion of melanoma cells. We confirmed that Olig2 was overexpressed in melanoma cells and tissues. Reduction of Olig2 increased apoptosis in melanoma cells by increasing p53 level and caspase-3/-7 enzyme activity. In addition, downregulation of Olig2 suppressed migration and invasion of melanoma cells by inhibiting EMT. Reduction of Olig2 inhibited expression of MMP-1 and the enzyme activity of MMP-2/-9 induced by TGF-ß. Moreover, Olig2 was involved in the downstream stages of MEK/ERK and PI3K/AKT, which are major signaling pathways in metastatic progression of melanoma. In conclusion, this study demonstrated the crucial roles of Olig2 in apoptosis, migration, and invasion of melanoma and may help to further our understanding of the relationship between Olig2 and melanoma progression.


Asunto(s)
Melanoma/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos/fisiología , Apoptosis , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Humanos , Procesos Neoplásicos , Transducción de Señal
13.
J Med Chem ; 63(24): 16012-16027, 2020 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-33325691

RESUMEN

Following our report that A3 adenosine receptor (AR) antagonist 1 exhibited a polypharmacological profile as a dual modulator of peroxisome proliferator-activated receptor (PPAR)γ/δ, we discovered a new template, 1'-homologated adenosine analogues 4a-4t, as dual PPARγ/δ modulators without AR binding. Removal of binding affinity to A3AR was achieved by 1'-homologation, and PPARγ/δ dual modulation was derived from the structural similarity between the target nucleosides and PPAR modulator drug, rosiglitazone. All the final nucleosides were devoid of AR-binding affinity and exhibited high binding affinities to PPARγ/δ but lacked PPARα binding. 2-Cl derivatives exhibited dual receptor-binding affinity to PPARγ/δ, which was absent for the corresponding 2-H derivatives. 2-Propynyl substitution prevented PPARδ-binding affinity but preserved PPARγ affinity, indicating that the C2 position defines a pharmacophore for selective PPARγ ligand designs. PPARγ/δ dual modulators functioning as both PPARγ partial agonists and PPARδ antagonists promoted adiponectin production, suggesting their therapeutic potential against hypoadiponectinemia-associated cancer and metabolic diseases.


Asunto(s)
Adenosina/química , Adenosina/farmacología , Adiponectina/metabolismo , Descubrimiento de Drogas , Obesidad/tratamiento farmacológico , PPAR alfa/antagonistas & inhibidores , PPAR gamma/agonistas , Animales , Sitios de Unión , Humanos , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Simulación de Dinámica Molecular , Obesidad/metabolismo , Obesidad/patología , PPAR alfa/metabolismo , PPAR gamma/metabolismo , Unión Proteica , Relación Estructura-Actividad
14.
Toxicol In Vitro ; 67: 104886, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32407875

RESUMEN

Benzophenone-3 (BP-3) and benzopenone-8 (BP-8) are commonly used ultraviolet (UV) filter ingredients in diverse sunscreen products. Recently, the obesogenic activity of avobenzone, a long wave UV A filter, was elucidated in the adipogenesis model of human bone marrow mesenchymal stem cells (hBM-MSCs). In this study, the obesogenic potentials of BP-3 and BP-8 were investigated because of their chemical similarity to avobenzone. During the adipogenesis in hBM-MSCs, BP-3 and BP-8 (EC50, 25.05 and 43.20 µM, respectively) potently promoted adiponectin secretion than avobenzone (EC50, 72.69 µM). In target identification, both BP-3 and BP-8 directly bound to peroxisome proliferator-activated receptor γ (PPARγ), which was associated with the recruitment of steroid receptor coactivator-2 (SRC-2). BP-3 functioned as a PPARγ full agonist whereas BP-8 was a PPARγ partial agonist. In addition, BP-3 and BP-8 significantly increased the gene transcription of PPARα, PPARγ, and major lipid metabolism-associated enzymes in human epidermal keratinocytes, a major target site of UV filters in human skin. This study suggests that BP-3 and BP-8 are obesogenic environmental chemicals similar to phthalates, bisphenols, and organotins.


Asunto(s)
Adipogénesis/efectos de los fármacos , Benzofenonas/toxicidad , Protectores Solares/toxicidad , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Obesidad , PPAR gamma/agonistas , PPAR gamma/genética , PPAR gamma/metabolismo , Transducción de Señal
15.
Biomolecules ; 10(2)2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32054125

RESUMEN

Adiponectin is an adipocyte-derived cytokine having an insulin-sensitizing activity. During the phenotypic screening of secondary metabolites derived from the marine fungus Aspergillusterreus, a poly cyclin-dependent kinase (CDK) inhibitor butyrolactone I affecting CDK1 and CDK5 was discovered as a potent adiponectin production-enhancing compound in the adipogenesis model of human bone marrow-derived mesenchymal stem cells (hBM-MSCs). CDK5 inhibitors exhibit insulin-sensitizing activities by suppressing the phosphorylation of peroxisome proliferator-activated receptor γ (PPARγ). However, the adiponectin production-enhancing activities of butyrolactone I have not been correlated with the potency of CDK5 inhibitor activities. In a target identification study, butyrolactone I was found to directly bind to PPARγ. In the crystal structure of the human PPARγ, the ligand-binding domain (LBD) in complex with butyrolactone I interacted with the amino acid residues located in the hydrophobic binding pockets of the PPARγ LBD, which is a typical binding mode of the PPARγ partial agonists. Therefore, the adiponectin production-enhancing effect of butyrolactone I was mediated by its polypharmacological dual modulator activities as both a CDK5 inhibitor and a PPARγ partial agonist.


Asunto(s)
4-Butirolactona/análogos & derivados , Quinasa 5 Dependiente de la Ciclina/antagonistas & inhibidores , PPAR gamma/agonistas , Inhibidores de Proteínas Quinasas/farmacología , 4-Butirolactona/química , 4-Butirolactona/farmacología , Adipogénesis/efectos de los fármacos , Adiponectina/biosíntesis , Sitios de Unión/fisiología , Células de la Médula Ósea , Células Cultivadas , Cristalografía por Rayos X , Quinasa 5 Dependiente de la Ciclina/química , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , PPAR gamma/química , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/química , Estructura Terciaria de Proteína
16.
Bioorg Med Chem ; 28(1): 115226, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31806266

RESUMEN

N6-(3-Iodobenzyl)adenosine-5'-N-methyluronamide (1a, IB-MECA) exhibited polypharmacological characteristics targeting A3 adenosine receptor (AR), peroxisome proliferator-activated receptor (PPAR) γ, and PPARδ, simultaneously. The bioisosteric replacement of oxygen in 4'-oxoadenosines with selenium significantly increased the PPARδ-binding activity. 2-Chloro-N6-(3-iodobenzyl)-4'-selenoadenosine-5'-N-methyluronamide (3e) and related 4'-selenoadenosine derivatives significantly enhanced adiponectin biosynthesis during adipogenesis in human bone marrow mesenchymal stem cells (hBM-MSCs). The PPARδ-binding affinity, but not the A3 AR binding affinity, of 4'-selenoadenosine derivatives correlated with their adiponectin secretion stimulation. Compared with the sugar ring of 4'-oxoadenosine, that of 4'-selenoadenosine was more favorable in forming the South sugar conformation. In the molecular docking simulation, the South sugar conformation of compound 3e formed additional hydrogen bonds inside the PPARδ ligand-binding pocket compared with the North conformation. Therefore, the sugar conformation of 4'-selenoadenosine PPAR modulators affects the ligand binding affinity against PPARδ.


Asunto(s)
Adenosina/farmacología , Adiponectina/biosíntesis , PPAR delta/metabolismo , Selenio/farmacología , Adenosina/análogos & derivados , Adenosina/química , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Selenio/química , Relación Estructura-Actividad
17.
Eur J Med Chem ; 187: 111969, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31865018

RESUMEN

Compounds inducing adiponectin production have therapeutic potential for metabolic diseases. During screening, heme oxygenase-1-inducing marliolide derivatives were identified as adiponectin-inducing compounds. Although some marliolide derivatives were directly bound to peroxisome proliferator-activated receptor γ (PPARγ), the adiponectin-inducing activity did not correlate with the PPARγ binding affinity. The most potent adiponectin inducing compound, (E,4S,5S)-3-butylidene-dihydro-4-hydroxy-5-methylfuran-2(3H)-one (1a), exhibited the weakest PPARγ binding activity. A docking simulation suggested that two 1a molecules can be present in two different sites within the PPARγ-ligand-binding pocket (LBP). Based on the docking model, novel linked butanolide dimer compounds were synthesized. A linked butanolide dimer compound, (3E,3'E,4S,4'S,5S,5'S)-3,3'-(decane-1,10-diylidene)bis(4-hydroxy-5-methyldihydrofuran-2(3H)-one) (3a), promoted adiponectin production in human bone marrow mesenchymal stem cells (hBM-MSCs) as a novel PPARγ full agonist (EC50, 4.34 µM). This linked butanolide dimer study provides novel insight into PPARγ biology, suggesting that small molecules can form multiple ligand interactions within the PPARγ-LBP and thereby affect the functional outcomes of PPARγ activation.


Asunto(s)
4-Butirolactona/farmacología , Adipogénesis/efectos de los fármacos , Adiponectina/biosíntesis , Células Madre Mesenquimatosas/efectos de los fármacos , PPAR gamma/agonistas , 4-Butirolactona/análogos & derivados , 4-Butirolactona/química , Células Cultivadas , Dimerización , Relación Dosis-Respuesta a Droga , Humanos , Células Madre Mesenquimatosas/metabolismo , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , PPAR gamma/metabolismo , Relación Estructura-Actividad
18.
Bioorg Med Chem ; 27(13): 2948-2958, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31128991

RESUMEN

Adiponectin is an adipocytokine with insulin-sensitizing, anti-atherogenic, and anti-inflammatory properties. Adiponectin secretion-inducing compounds have therapeutic potential in a variety of metabolic diseases. Phenotypic screening led to the discovery that 5,7-dihydroxy-8-(1-(4-hydroxy-3-methoxyphenyl)allyl)-2-phenyl-4H-chromen-4-one (compound 1) had adiponectin secretion-inducing activity during adipogenesis in human bone marrow mesenchymal stem cells (hBM-MSCs). Compound 1 was originally reported to be an anti-cancer chemical isolated from natural honeybee propolis, and its adiponectin secretion-inducing activity was found in non-cytotoxic concentrations. In a target identification study, compound 1 and its potent synthetic derivative compound 5 were shown to be novel pan-peroxisome proliferator-activator receptor (PPAR) modulators. Molecular docking models with PPARs have indicated that the binding modes of chromenone compounds preferentially interacted with the hydrophobic ligand binding pocket of PPARs. In addition, chromenone compounds have been shown to result in different phenotypic outcomes in the transcriptional regulation of lipid metabolic enzymes than those of selective PPAR mono-agonists for PPARα, PPARγ, and PPARδ. In line with the pharmacology of adiponectin and PPAR pan-modulators, compounds 1 and 5 may have diverse therapeutic potentials to treat cancer and metabolic diseases.


Asunto(s)
Adiponectina/química , PPAR gamma/química , Humanos , Modelos Moleculares
19.
Arch Toxicol ; 93(7): 1903-1915, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31016361

RESUMEN

Avobenzone is the most commonly used ultraviolet (UV) A filter ingredient in sunscreen. To investigate the biological activity of avobenzone in normal human epidermal keratinocytes (NHEKs), the genome-scale transcriptional profile of NHEKs was performed. In this microarray study, we found 273 up-regulated and 274 down-regulated differentially expressed genes (DEGs) in NHEKs treated with avobenzone (10 µM). Gene Ontology (GO) enrichment analysis showed that avobenzone significantly increased the DEGs associated with lipid metabolism in NHEKs. In addition, avobenzone increased the gene transcription of peroxisome proliferator-activated receptor γ (PPARγ) and fatty acid binding protein 4 in NHEKs, implicating that avobenzone may be one of the metabolic disrupting obesogens. To confirm the obesogenic potential, we examined the effect of avobenzone on adipogenesis in human bone marrow mesenchymal stem cells (hBM-MSCs). Avobenzone (EC50, 14.1 µM) significantly promoted adipogenesis in hBM-MSCs as its positive control obesogenic chemicals. Avobenzone (10 µM) significantly up-regulated mRNA levels of PPARγ during adipogenesis in hBM-MSCs. However, avobenzone did not directly bind to PPARγ and the avobenzone-induced adipogenesis-promoting activity was not affected by PPARγ antagonists T0070907 and GW9662. Therefore, avobenzone promoted adipogenesis in hBM-MSCs through a PPARγ-independent mechanism. This study suggests that avobenzone functions as a metabolic disrupting obesogen.


Asunto(s)
Adipogénesis/efectos de los fármacos , Queratinocitos/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Propiofenonas/toxicidad , Protectores Solares/toxicidad , Transcripción Genética/efectos de los fármacos , Adipogénesis/genética , Animales , Regulación hacia Abajo , Estudio de Asociación del Genoma Completo , Humanos , Queratinocitos/citología , Células Madre Mesenquimatosas/citología , Nivel sin Efectos Adversos Observados , Fenotipo , Ratas Sprague-Dawley , Pruebas de Toxicidad Aguda , Regulación hacia Arriba
20.
Mar Drugs ; 17(3)2019 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-30889916

RESUMEN

Six new phenalenone derivatives (1⁻6), along with five known compounds (7⁻11) of the herqueinone class, were isolated from a marine-derived fungus Penicillium sp. The absolute configurations of these compounds were assigned based on chemical modifications and their specific rotations. 4-Hydroxysclerodin (6) and an acetone adduct of a triketone (7) exhibited moderate anti-angiogenetic and anti-inflammatory activities, respectively, while ent-peniciherqueinone (1) and isoherqueinone (9) exhibited moderate abilities to induce adipogenesis without cytotoxicity.


Asunto(s)
Organismos Acuáticos/química , Penicillium/química , Fenalenos/farmacología , Adipogénesis/efectos de los fármacos , Adiponectina/metabolismo , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/aislamiento & purificación , Inhibidores de la Angiogénesis/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Línea Celular , Células Endoteliales de la Vena Umbilical Humana , Humanos , Células Madre Mesenquimatosas , Fenalenos/química , Fenalenos/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA