Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
JCI Insight ; 9(15)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916959

RESUMEN

Acute kidney injury (AKI) strongly upregulates the transcription factor Foxm1 in the proximal tubule in vivo, and Foxm1 drives epithelial proliferation in vitro. Here, we report that deletion of Foxm1 either with a nephron-specific Cre driver or by inducible global deletion reduced proximal tubule proliferation after ischemic injury in vivo. Foxm1 deletion led to increased AKI to chronic kidney disease transition, with enhanced fibrosis and ongoing tubule injury 6 weeks after injury. We report ERK mediated FOXM1 induction downstream of the EGFR in primary proximal tubule cells. We defined FOXM1 genomic binding sites by cleavage under targets and release using nuclease (CUT&RUN) and compared the genes located near FOXM1 binding sites with genes downregulated in primary proximal tubule cells after FOXM1 knockdown. The aligned data sets revealed the cell cycle regulator cyclin F (CCNF) as a putative FOXM1 target. We identified 2 cis regulatory elements that bound FOXM1 and regulated CCNF expression, demonstrating that Ccnf is strongly induced after kidney injury and that Foxm1 deletion abrogates Ccnf expression in vivo and in vitro. Knockdown of CCNF also reduced proximal tubule proliferation in vitro. These studies identify an ERK/FOXM1/CCNF signaling pathway that regulates injury-induced proximal tubule cell proliferation.


Asunto(s)
Lesión Renal Aguda , Proliferación Celular , Células Epiteliales , Proteína Forkhead Box M1 , Túbulos Renales Proximales , Animales , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Ratones , Proliferación Celular/genética , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Lesión Renal Aguda/genética , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Túbulos Renales Proximales/citología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Masculino , Ciclinas/metabolismo , Ciclinas/genética , Ratones Noqueados , Modelos Animales de Enfermedad , Regulación de la Expresión Génica
2.
Physiol Rep ; 10(11): e15307, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35656701

RESUMEN

Ferric citrate (FC) is an approved therapy for chronic kidney disease (CKD) patients as a phosphate (Pi) binder for dialysis-dependent CKD, and for iron deficiency anemia (IDA) in non-dialysis CKD. Elevated Pi and IDA both lead to increased FGF23, however, the roles of iron and FGF23 during CKD remain unclear. To this end, iron and Pi metabolism were tested in a mouse model of CKD (0.2% adenine) ± 0.5% FC for 6 weeks, with and without osteocyte deletion of Fgf23 (flox-Fgf23/Dmp1-Cre). Intact FGF23 (iFGF23) increased in all CKD mice but was lower in Cre+ mice with or without FC, thus the Dmp1-Cre effectively reduced FGF23. Cre+ mice fed AD-only had higher serum Pi than Cre- pre- and post-diet, and the Cre+ mice had higher BUN regardless of FC treatment. Total serum iron was higher in all mice receiving FC, and liver Tfrc, Bmp6, and hepcidin mRNAs were increased regardless of genotype; liver IL-6 showed decreased mRNA in FC-fed mice. The renal 1,25-dihydroxyvitamin D (1,25D) anabolic enzyme Cyp27b1 had higher mRNA and the catabolic Cyp24a1 showed lower mRNA in FC-fed mice. Finally, mice with loss of FGF23 had higher bone cortical porosity, whereas Raman spectroscopy showed no changes in matrix mineral parameters. Thus, FC- and FGF23-dependent and -independent actions were identified in CKD; loss of FGF23 was associated with higher serum Pi and BUN, demonstrating that FGF23 was protective of mineral metabolism. In contrast, FC maintained serum iron and corrected inflammation mediators, potentially providing ancillary benefit.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Hierro , Insuficiencia Renal Crónica , Animales , Ácido Cítrico , Modelos Animales de Enfermedad , Electrólitos , Compuestos Férricos , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/metabolismo , Humanos , Hierro/metabolismo , Ratones , Minerales , ARN Mensajero/metabolismo , Insuficiencia Renal Crónica/metabolismo
3.
Sci Rep ; 11(1): 22593, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34799645

RESUMEN

Mesenchymal progenitors differentiate into several tissues including bone, cartilage, and adipose. Targeting these cells in vivo is challenging, making mesenchymal progenitor cell lines valuable tools to study tissue development. Mesenchymal stem cells (MSCs) can be isolated from humans and animals; however, obtaining homogenous, responsive cells in a reproducible fashion is challenging. As such, we developed two mesenchymal progenitor cell (MPC) lines, MPC1 and MPC2, generated from bone marrow of male C57BL/6 mice. These cells were immortalized using the temperature sensitive large T-antigen, allowing for thermal control of proliferation and differentiation. Both MPC1 and MPC2 cells are capable of osteogenic, adipogenic, and chondrogenic differentiation. Under osteogenic conditions, both lines formed mineralized nodules, and stained for alizarin red and alkaline phosphatase, while expressing osteogenic genes including Sost, Fgf23, and Dmp1. Sost and Dmp1 mRNA levels were drastically reduced with addition of parathyroid hormone, thus recapitulating in vivo responses. MPC cells secreted intact (iFGF23) and C-terminal (cFGF23) forms of the endocrine hormone FGF23, which was upregulated by 1,25 dihydroxy vitamin D (1,25D). Both lines also rapidly entered the adipogenic lineage, expressing adipose markers after 4 days in adipogenic media. MPC cells were also capable of chondrogenic differentiation, displaying increased expression of cartilaginous genes including aggrecan, Sox9, and Comp. With the ability to differentiate into multiple mesenchymal lineages and mimic in vivo responses of key regulatory genes/proteins, MPC cells are a valuable model to study factors that regulate mesenchymal lineage allocation as well as the mechanisms that dictate transcription, protein modification, and secretion of these factors.


Asunto(s)
Adipocitos/citología , Técnicas de Cultivo de Célula , Condrocitos/citología , Células Madre Mesenquimatosas/citología , Osteocitos/citología , Animales , Diferenciación Celular , Línea Celular , Linaje de la Célula , Proliferación Celular , Factor-23 de Crecimiento de Fibroblastos/metabolismo , Inmunofenotipificación , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo
4.
Bone ; 146: 115885, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33618073

RESUMEN

BACKGROUND: During aging, there is a normal and mild loss in kidney function that leads to abnormalities of the kidney-bone metabolic axis. In the setting of increased phosphorus intake, hyperphosphatemia can occur despite increased concentrations of the phosphaturic hormone FGF23. This is likely from decreased expression of the FGF23 co-receptor Klotho (KL) with age; however, the roles of age and sex in the homeostatic responses to mild phosphate challenges remain unclear. METHODS: Male and female 16-week and 78-week mice were placed on either normal grain-based chow or casein (higher bioavailable phosphate) diets for 8 weeks. Gene expression, serum biochemistries, micro-computed tomography, and skeletal mechanics were used to assess the impact of mild phosphate challenge on multiple organ systems. Cell culture of differentiated osteoblast/osteocytes was used to test mechanisms driving key outcomes. RESULTS: Aging female mice responded to phosphate challenge by significantly elevating serum intact FGF23 (iFGF23) versus control diet; males did not show this response. Male mice, regardless of age, exhibited higher kidney KL mRNA with similar phosphate levels across both sexes. However, males and females had similar blood phosphate, calcium, and creatinine levels irrespective of age, suggesting that female mice upregulated FGF23 to maintain blood phosphorus, and compromised renal function could not explain the increased serum iFGF23. The 17ß-estradiol levels were not different between groups, and in vivo bone steroid receptor (estrogen receptor 1 [Esr1], estrogen receptor 2 [Esr2], androgen receptor [Ar]) expression was not different by age, sex, or diet. Trabecular bone volume was higher in males but decreased with both age and phosphate challenge in both sexes. Cortical porosity increased with age in males but not females. In vitro studies demonstrated that 17ß-estradiol treatment upregulated FGF23 and Esr2 mRNAs in a dose-dependent manner. CONCLUSIONS: Our study demonstrates that aging female mice upregulate FGF23 to a greater degree during a mild phosphate challenge to maintain blood phosphorus versus young female and young/old male mice, potentially due to direct estradiol effects on osteocytes. Thus, the control of phosphate intake during aging could have modifiable outcomes for FGF23-related phenotypes.


Asunto(s)
Hiperfosfatemia , Fosfatos , Animales , Femenino , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos , Glucuronidasa , Masculino , Ratones , Ratones Noqueados , Osteocitos , Microtomografía por Rayos X
5.
Curr Mol Biol Rep ; 5(1): 18-25, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31008021

RESUMEN

PURPOSE OF REVIEW: The phosphaturic hormone FGF23 is produced primarily in osteoblasts/osteocytes and is known to respond to increases in serum phosphate and 1,25(OH)2 vitamin D (1,25D). Novel regulators of FGF23 were recently identified, and may help explain the pathophysiologies of several diseases. This review will focus on recent studies examining the synthesis and actions of FGF23. RECENT FINDINGS: The synthesis of FGF23 in response to 1,25D is similar to other steroid hormone targets, but the cellular responses to phosphate remain largely unknown. The activity of intracellular processing genes control FGF23 glycosylation and phosphorylation, providing critical functions in determining the serum levels of bioactive FGF23. The actions of FGF23 largely occur through its co-receptor αKlotho (KL) under normal circumstances, but FGF23 has KL-independent activity during situations of high concentrations. SUMMARY: Recent work regarding FGF23 synthesis and bioactivity, as well as considerations for diseases of altered phosphate balance will be reviewed.

6.
J Biol Chem ; 290(22): 14004-18, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-25864198

RESUMEN

WISP1/CCN4 (hereafter referred to as WISP1), a member of the CCN family, is found in mineralized tissues and is produced by osteoblasts and their precursors. In this study, Wisp1-deficient (Wisp1(-/-)) mice were generated. Using dual-energy x-ray absorptiometry, we showed that by 3 months, the total bone mineral density of Wisp1(-/-) mice was significantly lower than that of WT mice. Further investigation by micro-computed tomography showed that female Wisp1(-/-) mice had decreased trabecular bone volume/total volume and that both male and female Wisp1(-/-) mice had decreased cortical bone thickness accompanied by diminished biomechanical strength. The molecular basis for decreased bone mass in Wisp1(-/-) mice arises from reduced bone formation likely caused by osteogenic progenitors that differentiate poorly compared with WT cells. Osteoclast precursors from Wisp1(-/-) mice developed more tartrate-resistant acid phosphatase-positive cells in vitro and in transplants, suggesting that WISP1 is also a negative regulator of osteoclast differentiation. When bone turnover (formation and resorption) was induced by ovariectomy, Wisp1(-/-) mice had lower bone mineral density compared WT mice, confirming the potential for multiple roles for WISP1 in controlling bone homeostasis. Wisp1(-/-) bone marrow stromal cells had reduced expression of ß-catenin and its target genes, potentially caused by WISP1 inhibition of SOST binding to LRP6. Taken together, our data suggest that the decreased bone mass found in Wisp1(-/-) mice could potentially be caused by an insufficiency in the osteodifferentiation capacity of bone marrow stromal cells arising from diminished Wnt signaling, ultimately leading to altered bone turnover and weaker biomechanically compromised bones.


Asunto(s)
Remodelación Ósea , Huesos/metabolismo , Proteínas CCN de Señalización Intercelular/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Vía de Señalización Wnt , Alelos , Animales , Células de la Médula Ósea/citología , Diferenciación Celular , Células Cultivadas , Matriz Extracelular/metabolismo , Femenino , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Masculino , Ratones , Ratones Noqueados , Osteoblastos/metabolismo , Osteoclastos/metabolismo , ARN Mensajero/metabolismo , Receptores de LDL/metabolismo , Recombinación Genética , Células del Estroma/citología , Proteínas Supresoras de Tumor/metabolismo , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA