Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Sci Rep ; 10(1): 21714, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33303918

RESUMEN

A heterotrimeric transcription factor NF-Y is crucial for cell-cycle progression in various types of cells. In contrast, studies using NF-YA knockout mice have unveiled its essential role in endoplasmic reticulum (ER) homeostasis in neuronal cells. However, whether NF-Y modulates a different transcriptome to mediate distinct cellular functions remains obscure. Here, we knocked down NF-Y in two types of neuronal cells, neuro2a neuroblastoma cells and mouse brain striatal cells, and performed gene expression profiling. We found that down-regulated genes preferentially contained NF-Y-binding motifs in their proximal promoters, and notably enriched genes related to ER functions rather than those for cell cycle. This contrasts with the profiling data of HeLa and embryonic stem cells in which distinct down-regulation of cell cycle-related genes was observed. Clustering analysis further identified several functional clusters where populations of the down-regulated genes were highly distinct. Further analyses using chromatin immunoprecipitation and RNA-seq data revealed that the transcriptomic difference was not correlated with DNA binding of NF-Y but with splicing of NF-YA. These data suggest that neuronal cells have a different type of transcriptome in which ER-related genes are dominantly modulated by NF-Y, and imply that NF-YA splicing alteration could be involved in this cell type-specific gene modulation.


Asunto(s)
Factor de Unión a CCAAT/genética , Factor de Unión a CCAAT/fisiología , Ciclo Celular/genética , Neuronas/fisiología , Transcriptoma/genética , Empalme Alternativo , Animales , Retículo Endoplásmico/genética , Perfilación de la Expresión Génica , Células HeLa , Homeostasis/genética , Humanos , Ratones , Neuronas/metabolismo , Empalme del ARN
2.
Neurosci Res ; 147: 58-63, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30391555

RESUMEN

Huntington Disease (HD) is a neurodegenerative disorder caused by expanded CAG repeats in the exon1 of huntingtin gene (HTT). The mutant HTT affects the transcriptional profile of neurons by disrupting the activities of transcriptional machinery and alters expression of many genes. In this study, we identified dysregulated non-coding RNAs (ncRNAs) in medium spiny neurons of 4-week-old HD model mouse. Also, we observed the intracellular localizations of Abhd11os and Neat1 ncRNAs by ViewRNA in situ hybridization, which could provide more precise detection, suggesting that it is a useful method to investigate the expression changes of genes with low expression levels.


Asunto(s)
Enfermedad de Huntington/metabolismo , Neuronas/metabolismo , ARN Largo no Codificante/biosíntesis , Serina Proteasas/biosíntesis , Animales , Encéfalo/metabolismo , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Expresión Génica , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Hibridación in Situ , Ratones , Ratones Transgénicos , Neuronas/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Serina Proteasas/genética , Serina Proteasas/metabolismo , Transcriptoma
3.
Acta Neuropathol Commun ; 6(1): 96, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30231908

RESUMEN

Accumulating evidence suggests that the lesions of Parkinson's disease (PD) expand due to transneuronal spreading of fibrils composed of misfolded alpha-synuclein (a-syn), over the course of 5-10 years. However, the precise mechanisms and the processes underlying the spread of these fibril seeds have not been clarified in vivo. Here, we investigated the speed of a-syn transmission, which has not been a focus of previous a-syn transmission experiments, and whether a-syn pathologies spread in a neural circuit-dependent manner in the mouse brain. We injected a-syn preformed fibrils (PFFs), which are seeds for the propagation of a-syn deposits, either before or after callosotomy, to disconnect bilateral hemispheric connections. In mice that underwent callosotomy before the injection, the propagation of a-syn pathology to the contralateral hemisphere was clearly reduced. In contrast, mice that underwent callosotomy 24 h after a-syn PFFs injection showed a-syn pathology similar to that seen in mice without callosotomy. These results suggest that a-syn seeds are rapidly disseminated through neuronal circuits immediately after seed injection, in a prion-like seeding experiment in vivo, although it is believed that clinical a-syn pathologies take years to spread throughout the brain. In addition, we found that botulinum toxin B blocked the transsynaptic transmission of a-syn seeds by specifically inactivating the synaptic vesicle fusion machinery. This study offers a novel concept regarding a-syn propagation, based on the Braak hypothesis, and also cautions that experimental transmission systems may be examining a unique type of transmission, which differs from the clinical disease state.


Asunto(s)
Encéfalo/patología , Red Nerviosa/patología , Neuronas/metabolismo , Enfermedad de Parkinson/patología , Enfermedades por Prión/patología , alfa-Sinucleína/metabolismo , Amiloide/toxicidad , Animales , Toxinas Botulínicas Tipo A/metabolismo , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Lateralidad Funcional , Humanos , Ratones Endogámicos C57BL , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Neuronas/patología , Transporte de Proteínas , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/fisiología , Factores de Tiempo , Tirosina 3-Monooxigenasa/metabolismo
4.
J Biol Chem ; 292(32): 13428-13440, 2017 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-28655765

RESUMEN

Voltage-gated sodium channels (VGSCs) are transmembrane proteins required for the generation of action potentials in excitable cells and essential for propagating electrical impulses along nerve cells. VGSCs are complexes of a pore-forming α subunit and auxiliary ß subunits, designated as ß1/ß1B-ß4 (encoded by SCN1B-4B, respectively), which also function in cell-cell adhesion. We previously reported the structural basis for the trans homophilic interaction of the ß4 subunit, which contributes to its adhesive function. Here, using crystallographic and biochemical analyses, we show that the ß4 extracellular domains directly interact with each other in a parallel manner that involves an intermolecular disulfide bond between the unpaired Cys residues (Cys58) in the loop connecting strands B and C and intermolecular hydrophobic and hydrogen-bonding interactions of the N-terminal segments (Ser30-Val35). Under reducing conditions, an N-terminally deleted ß4 mutant exhibited decreased cell adhesion compared with the wild type, indicating that the ß4 cis dimer contributes to the trans homophilic interaction of ß4 in cell-cell adhesion. Furthermore, this mutant exhibited increased association with the α subunit, indicating that the cis dimerization of ß4 affects α-ß4 complex formation. These observations provide the structural basis for the parallel dimer formation of ß4 in VGSCs and reveal its mechanism in cell-cell adhesion.


Asunto(s)
Modelos Moleculares , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/metabolismo , Animales , Células CHO , Adhesión Celular , Cricetulus , Cristalografía por Rayos X , Cisteína/química , Cistina/química , Dimerización , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/química , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/genética
5.
Sci Rep ; 6: 35236, 2016 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-27739513

RESUMEN

FUS/TLS is an RNA/DNA-binding protein associated with neurodegenerative diseases including amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Previously, we found that a prion-like domain in the N-terminus of FUS/TLS mediates co-aggregation between FUS/TLS and mutant huntingtin, the gene product of Huntington's disease (HD). Here, we show that heterozygous knockout of FUS/TLS worsened the phenotypes of model mice of (HD, but not spinal and bulbar muscular atrophy (SBMA). This difference was correlated with the degree of pathological association between disease proteins and FUS/TLS. Co-aggregation between FUS/TLS and mutant huntingtin resulted in the depletion of free FUS/TLS protein in HD mice that was detected as a monomer in SDS-PAGE analysis. Recently, we found that FUS/TLS paralogs, TAF15 and EWS, were up-regulated in homozygous FUS/TLS knockout mice. These two proteins were up-regulated in both HD and FUS/TLS heterozygote mice, and were further elevated in HD-TLS+/- double mutant mice, consistent with the functional impairment of FUS/TLS. These results suggest that FUS/TLS sequestration by co-aggregation is a rate-limiting factor of disease phenotypes of HD and that inclusions may have an adverse aspect, rather than being simply benign or protective. In addition, our results highlight inclusions as repositories of potential modifiers of neurodegeneration.


Asunto(s)
Enfermedades Neurodegenerativas/metabolismo , Péptidos/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Femenino , Homocigoto , Proteína Huntingtina/metabolismo , Cuerpos de Inclusión/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos/metabolismo , Mutación/fisiología , Fenotipo , Proteínas de Unión al ARN/metabolismo , Regulación hacia Arriba/fisiología
6.
Biochem Biophys Res Commun ; 467(2): 322-7, 2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26454170

RESUMEN

The tumor suppressor p53, a 393-amino acid transcription factor with four domains, induces cell cycle arrest, senescence, and apoptosis in response to diverse stress. Tetramer formation is critical for the function of p53. The tetramerization domain permits the tetramerization of p53, where bundled four DNA-binding domains recognize the specific target DNA sequences and activate hundreds of genes, which lead to the various cell fates. Here we show that tumor suppressive functions of p53 can be regulated by manipulating tetramer formation of an engineered p53, in which tetramerization domain of p53 is replaced with an inducible tetramer forming protein. This result suggests that artificial regulation of p53 activity by the engineered p53 is a useful tool to investigate the tumor suppression mechanism of p53 and to combat cancer.


Asunto(s)
Proteínas Recombinantes de Fusión/química , Serina-Treonina Quinasas TOR/química , Proteínas de Unión a Tacrolimus/química , Proteína p53 Supresora de Tumor/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Plásmidos/química , Plásmidos/metabolismo , Ingeniería de Proteínas , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
7.
Biochem Biophys Res Commun ; 463(4): 1196-202, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26086102

RESUMEN

Dominant mutations in Cu,Zn-superoxide dismutase (SOD1) cause a familial form of amyotrophic lateral sclerosis (ALS). A pathological hallmark of the familial ALS is the formation of mutant SOD1 aggregates, leading to the proposal that SOD1 gains toxicities through protein misfolding triggered by mutations. Nevertheless, molecular requirements for mutant SOD1 to acquire pathogenicity still remain obscure. Here, we show that Cys residues in SOD1 are essential to exerting toxicities of SOD1 in a Caenorhabditis elegans model. Exogenous expression of wild-type as well as pathogenic mutant SOD1 fused with a fluorescent protein in C. elegans resulted in the accumulation of disulfide-reduced SOD1 and retarded the worm's motility. In contrast, little effects of exogenously expressed SOD1 on the motility were observed when all four Cys residues in SOD1 were replaced with Ser. Taken together, we propose that deregulation of Cys chemistry in SOD1 proteins is involved in the pathogenesis of SOD1-related ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/enzimología , Caenorhabditis elegans/efectos de los fármacos , Cisteína/metabolismo , Superóxido Dismutasa/metabolismo , Animales , Modelos Animales de Enfermedad , Superóxido Dismutasa/química
8.
Acta Neuropathol Commun ; 3: 24, 2015 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-25907258

RESUMEN

INTRODUCTION: FUS/TLS is an RNA-binding protein whose genetic mutations or pathological inclusions are associated with neurological diseases including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration, and essential tremor (ET). It is unclear whether their pathogenesis is mediated by gain or loss of function of FUS/TLS. RESULTS: Here, we established outbred FUS/TLS knockout mice to clarify the effects of FUS/TLS dysfunction in vivo. We obtained homozygous knockout mice that grew into adulthood. Importantly, they did not manifest ALS- or ET-like phenotypes until nearly two years. Instead, they showed distinct histological and behavioral alterations including vacuolation in hippocampus, hyperactivity, and reduction in anxiety-like behavior. Knockout mice showed transcriptome alterations including upregulation of Taf15 and Hnrnpa1, while they have normal morphology of RNA-related granules such as Gems. CONCLUSIONS: Collectively, FUS/TLS depletion causes phenotypes possibly related to neuropsychiatric and neurodegenerative conditions, but distinct from ALS and ET, together with specific alterations in RNA metabolisms.


Asunto(s)
Esclerosis Amiotrófica Lateral/fisiopatología , Ansiedad/psicología , Conducta Animal , Proteína FUS de Unión a ARN/genética , Proteínas de Unión al ARN/genética , Esclerosis Amiotrófica Lateral/genética , Animales , Modelos Animales de Enfermedad , Temblor Esencial/genética , Temblor Esencial/fisiopatología , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Homocigoto , Hipercinesia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Proteína FUS de Unión a ARN/deficiencia , Factores Asociados con la Proteína de Unión a TATA/genética , Regulación hacia Arriba
9.
Hum Mol Genet ; 24(3): 740-56, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25274774

RESUMEN

In some neurological diseases caused by repeat expansions such as myotonic dystrophy, the RNA-binding protein muscleblind-like 1 (MBNL1) accumulates in intranuclear inclusions containing mutant repeat RNA. The interaction between MBNL1 and mutant RNA in the nucleus is a key event leading to loss of MBNL function, yet the details of this effect have been elusive. Here, we investigated the mechanism and significance of MBNL1 nuclear localization. We found that MBNL1 contains two classes of nuclear localization signal (NLS), a classical bipartite NLS and a novel conformational NLS. Alternative splicing of exon 7 acts as a switch between these NLS types and couples MBNL1 activity and intracellular localization. Depending on its nuclear localization, MBNL1 promoted nuclear accumulation of mutant RNA containing a CUG or CAG repeat, some of which produced proteins containing homopolymeric tracts such as polyglutamine. Furthermore, MBNL1 repressed the expression of these homopolymeric proteins including those presumably produced through repeat-associated non-ATG (RAN) translation. These results suggest that nuclear retention of expanded RNA reflects a novel role of MBNL proteins in repressing aberrant protein expression and may provide pathological and therapeutic implications for a wide range of repeat expansion diseases associated with nuclear RNA retention and/or RAN translation.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Señales de Localización Nuclear/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Expansión de Repetición de Trinucleótido , Empalme Alternativo , Animales , Células COS , Línea Celular Tumoral , Núcleo Celular/genética , Chlorocebus aethiops , Proteínas de Unión al ADN/química , Regulación de la Expresión Génica , Humanos , Ratones , Mutación , Señales de Localización Nuclear/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/química
10.
Hum Mol Genet ; 24(4): 1092-105, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25305080

RESUMEN

Huntington's disease (HD) is a dominantly inherited genetic disease caused by mutant huntingtin (htt) protein with expanded polyglutamine (polyQ) tracts. A neuropathological hallmark of HD is the presence of neuronal inclusions of mutant htt. p62 is an important regulatory protein in selective autophagy, a process by which aggregated proteins are degraded, and it is associated with several neurodegenerative disorders including HD. Here, we investigated the effect of p62 depletion in three HD model mice: R6/2, HD190QG and HD120QG mice. We found that loss of p62 in these models led to longer life spans and reduced nuclear inclusions, although cytoplasmic inclusions increased with polyQ length. In mouse embryonic fibroblasts (MEFs) with or without p62, mutant htt with a nuclear localization signal (NLS) showed no difference in nuclear inclusion between the two MEF types. In the case of mutant htt without NLS, however, p62 depletion increased cytoplasmic inclusions. Furthermore, to examine the effect of impaired autophagy in HD model mice, we crossed R6/2 mice with Atg5 conditional knockout mice. These mice also showed decreased nuclear inclusions and increased cytoplasmic inclusions, similar to HD mice lacking p62. These data suggest that the genetic ablation of p62 in HD model mice enhances cytoplasmic inclusion formation by interrupting autophagic clearance of polyQ inclusions. This reduces polyQ nuclear influx and paradoxically ameliorates disease phenotypes by decreasing toxic nuclear inclusions.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Enfermedad de Huntington/genética , Cuerpos de Inclusión Intranucleares/genética , Fenotipo , Animales , Autofagia , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Femenino , Hipocampo/metabolismo , Hipocampo/patología , Enfermedad de Huntington/mortalidad , Enfermedad de Huntington/patología , Espacio Intracelular/metabolismo , Longevidad/genética , Ratones , Ratones Noqueados , Péptidos/genética , Proteolisis
11.
Proc Natl Acad Sci U S A ; 111(38): E3966-75, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-25201980

RESUMEN

The inositol 1,4,5-trisphosphate receptor (IP3R) in the endoplasmic reticulum mediates calcium signaling that impinges on intracellular processes. IP3Rs are allosteric proteins comprising four subunits that form an ion channel activated by binding of IP3 at a distance. Defective allostery in IP3R is considered crucial to cellular dysfunction, but the specific mechanism remains unknown. Here we demonstrate that a pleiotropic enzyme transglutaminase type 2 targets the allosteric coupling domain of IP3R type 1 (IP3R1) and negatively regulates IP3R1-mediated calcium signaling and autophagy by locking the subunit configurations. The control point of this regulation is the covalent posttranslational modification of the Gln2746 residue that transglutaminase type 2 tethers to the adjacent subunit. Modification of Gln2746 and IP3R1 function was observed in Huntington disease models, suggesting a pathological role of this modification in the neurodegenerative disease. Our study reveals that cellular signaling is regulated by a new mode of posttranslational modification that chronically and enzymatically blocks allosteric changes in the ligand-gated channels that relate to disease states.


Asunto(s)
Autofagia , Señalización del Calcio , Proteínas de Unión al GTP/metabolismo , Enfermedad de Huntington/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Procesamiento Proteico-Postraduccional , Transglutaminasas/metabolismo , Regulación Alostérica/genética , Animales , Modelos Animales de Enfermedad , Proteínas de Unión al GTP/genética , Células HeLa , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Receptores de Inositol 1,4,5-Trifosfato/genética , Células PC12 , Proteína Glutamina Gamma Glutamiltransferasa 2 , Estructura Terciaria de Proteína , Ratas , Transglutaminasas/genética
12.
Biochim Biophys Acta ; 1842(9): 1472-84, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24769000

RESUMEN

Polyglutamine diseases are a family of inherited neurodegenerative diseases caused by the expansion of CAG repeats within the coding region of target genes. Still the mechanism(s) by which polyglutamine proteins are ubiquitinated and degraded remains obscure. Here, for the first time, we demonstrate that Mahogunin 21 ring finger 1 E3 ubiquitin protein ligase is depleted in cells that express expanded-polyglutamine proteins. MGRN1 co-immunoprecipitates with expanded-polyglutamine huntingtin and ataxin-3 proteins. Furthermore, we show that MGRN1 is predominantly colocalized and recruits with polyglutamine aggregates in both cellular and transgenic mouse models. Finally, we demonstrate that the partial depletion of MGRN1 increases the rate of aggregate formation and cell death, whereas the overexpression of MGRN1 reduces the frequency of aggregate formation and provides cytoprotection against polyglutamine-induced proteotoxicity. These observations suggest that stimulating the activity of MGRN1 ubiquitin ligase might be a potential therapeutic target to eliminate the cytotoxic threat in polyglutamine diseases.


Asunto(s)
Apoptosis , Proteínas del Tejido Nervioso/metabolismo , Péptidos/metabolismo , Pliegue de Proteína , Ubiquitina-Proteína Ligasas/fisiología , Ubiquitina/metabolismo , Animales , Western Blotting , Proliferación Celular , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Humanos , Proteína Huntingtina , Inmunoprecipitación , Masculino , Ratones , Ratones Transgénicos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas del Tejido Nervioso/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
Nat Commun ; 5: 3354, 2014 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-24566496

RESUMEN

Nuclear transcription factor-Y (NF-Y), a key regulator of cell-cycle progression, often loses its activity during differentiation into nonproliferative cells. In contrast, NF-Y is still active in mature, differentiated neurons, although its neuronal significance remains obscure. Here we show that conditional deletion of the subunit NF-YA in postmitotic mouse neurons induces progressive neurodegeneration with distinctive ubiquitin/p62 pathology; these proteins are not incorporated into filamentous inclusion but co-accumulated with insoluble membrane proteins broadly on endoplasmic reticulum (ER). The degeneration also accompanies drastic ER disorganization, that is, an aberrant increase in ribosome-free ER in the perinuclear region, without inducing ER stress response. We further perform chromatin immunoprecipitation and identify several NF-Y physiological targets including Grp94 potentially involved in ER disorganization. We propose that NF-Y is involved in a unique regulation mechanism of ER organization in mature neurons and its disruption causes previously undescribed novel neuropathology accompanying abnormal ubiquitin/p62 accumulation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factor de Unión a CCAAT/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Ubiquitina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Factor de Unión a CCAAT/genética , Línea Celular Tumoral , Estrés del Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/fisiología , Femenino , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedades Neurodegenerativas/genética , Proteína Sequestosoma-1 , Ubiquitina/genética
14.
J Biol Chem ; 289(2): 1192-202, 2014 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-24280224

RESUMEN

Dominant mutations in FUS/TLS cause a familial form of amyotrophic lateral sclerosis (fALS), where abnormal accumulation of mutant FUS proteins in cytoplasm has been observed as a major pathological change. Many of pathogenic mutations have been shown to deteriorate the nuclear localization signal in FUS and thereby facilitate cytoplasmic mislocalization of mutant proteins. Several other mutations, however, exhibit no effects on the nuclear localization of FUS in cultured cells, and their roles in the pathomechanism of fALS remain obscure. Here, we show that a pathogenic mutation, G156E, significantly increases the propensities for aggregation of FUS in vitro and in vivo. Spontaneous in vitro formation of amyloid-like fibrillar aggregates was observed in mutant but not wild-type FUS, and notably, those fibrils functioned as efficient seeds to trigger the aggregation of wild-type protein. In addition, the G156E mutation did not disturb the nuclear localization of FUS but facilitated the formation of intranuclear inclusions in rat hippocampal neurons with significant cytotoxicity. We thus propose that intranuclear aggregation of FUS triggered by a subset of pathogenic mutations is an alternative pathomechanism of FUS-related fALS diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Núcleo Celular/metabolismo , Mutación , Proteína FUS de Unión a ARN/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Amiloide/química , Amiloide/metabolismo , Amiloide/ultraestructura , Esclerosis Amiotrófica Lateral/genética , Animales , Línea Celular Tumoral , Células Cultivadas , Electroforesis en Gel de Poliacrilamida , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Humanos , Microscopía Confocal , Microscopía Electrónica , Neuronas/citología , Neuronas/metabolismo , Desnaturalización Proteica , Proteína FUS de Unión a ARN/química , Proteína FUS de Unión a ARN/genética , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
15.
FEBS Lett ; 587(16): 2500-5, 2013 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-23831581

RESUMEN

Once a protein adopts the fibrillar aggregate conformation, a seeding reaction becomes operative in which pre-formed fibrils function as seeds for soluble protein molecules to be fibrillized. Such a seeding reaction accelerates the protein fibrillation in vitro; however, more investigation is required to test the seeded fibrillation inside cells. Here, we show that in vitro Cu,Zn-superoxide dismutase (SOD1) fibrils are transduced into cells and function as seeds to trigger the aggregation of endogenously expressed SOD1. Seeded aggregation of mutant SOD1 will thus play roles in a molecular pathomechanism of SOD1-linked amyotrophic lateral sclerosis.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Regulación Enzimológica de la Expresión Génica , Mutación , Superóxido Dismutasa/metabolismo , Amiloide/metabolismo , Animales , Línea Celular Tumoral , Humanos , Ratones , Fenotipo , Unión Proteica , Pliegue de Proteína , Superóxido Dismutasa-1
16.
Biochim Biophys Acta ; 1832(8): 1271-8, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23597596

RESUMEN

Many proteins exhibit propensities to form fibrillar aggregates called amyloids that are rich in ß-sheet structures. Abnormal accumulation of amyloids in the brain and spinal cords is well known as a major pathological change in neurodegenerative diseases; therefore, amyloids have long been considered as disease culprits formed via protein misfolding and should be avoided in healthy cells. Recently, however, increasing numbers of proteins have been identified that require formation of fibrillar states for exertion of their physiological functions, and the critical roles of such functional amyloids include a molecular switch for environmental adaptation, a structural template for catalysis, and a regulator of intracellular signaling. Protein amyloids will, therefore, be more prevailed in our physiologies than we have expected so far. Here, we have reviewed recent studies on such regulatory roles of protein fibrillar aggregates in various physiologies and further discussed possible relations of functional to pathological amyloids.


Asunto(s)
Amiloide/metabolismo , Amiloidosis/genética , Amiloidosis/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , ARN/genética , Amiloide/genética , Animales , Humanos , Pliegue de Proteína , ARN/metabolismo
17.
Biochem Biophys Res Commun ; 436(2): 121-7, 2013 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-23524259

RESUMEN

Repetitive transcranial magnetic stimulation (rTMS) is a new tool that has been used for the treatment of patients with neuropsychiatric disorders. However, the mechanisms underlying the effects of rTMS are still unclear. We analyzed the changes in mRNA expression in mouse brain that occurred after rTMS with an Affymetrix GeneChip. Following 20days of rTMS, many genes were differentially expressed in the mouse brain. Downregulation of Period 2 and 3 mRNA expression levels and a subsequent decrease in food and water intake were observed. HSP70 mRNA expression levels were upregulated after transient and chronic rTMS. In N2A 150Q cells, an upregulation of HSP70 mRNA and protein levels and subsequent cell-protective effects were observed after chronic rTMS. In addition, dopamine receptor 2 mRNA expression levels were downregulated, and a subsequent decrease in the binding of [(3)H]raclopride was observed. These results indicated that the modulation of several genes may be involved in the therapeutic mechanisms of chronic rTMS for patients with neuropsychiatric disorders.


Asunto(s)
Encéfalo/metabolismo , Perfilación de la Expresión Génica , Trastornos Mentales/genética , Trastornos Mentales/terapia , Estimulación Magnética Transcraneal/métodos , Animales , Unión Competitiva , Western Blotting , Línea Celular Tumoral , Regulación hacia Abajo , Proteínas del Choque Térmico HSP72/genética , Proteínas del Choque Térmico HSP72/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Circadianas Period/genética , Racloprida/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tritio , Regulación hacia Arriba
18.
Proc Natl Acad Sci U S A ; 109(45): 18577-82, 2012 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-23090990

RESUMEN

Voltage-gated sodium (Na(V)) and potassium (K(V)) channels are critical components of neuronal action potential generation and propagation. Here, we report that Na(V)ß1 encoded by SCN1b, an integral subunit of Na(V) channels, coassembles with and modulates the biophysical properties of K(V)1 and K(V)7 channels, but not K(V)3 channels, in an isoform-specific manner. Distinct domains of Na(V)ß1 are involved in modulation of the different K(V) channels. Studies with channel chimeras demonstrate that Na(V)ß1-mediated changes in activation kinetics and voltage dependence of activation require interaction of Na(V)ß1 with the channel's voltage-sensing domain, whereas changes in inactivation and deactivation require interaction with the channel's pore domain. A molecular model based on docking studies shows Na(V)ß1 lying in the crevice between the voltage-sensing and pore domains of K(V) channels, making significant contacts with the S1 and S5 segments. Cross-modulation of Na(V) and K(V) channels by Na(V)ß1 may promote diversity and flexibility in the overall control of cellular excitability and signaling.


Asunto(s)
Canales de Potasio con Entrada de Voltaje/metabolismo , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Activación del Canal Iónico , Cinética , Ratones , Modelos Moleculares , Células PC12 , Canales de Potasio con Entrada de Voltaje/química , Unión Proteica , Estructura Terciaria de Proteína , Ratas , Xenopus
19.
Biochem Biophys Res Commun ; 416(1-2): 13-7, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-22056561

RESUMEN

Huntington's disease (HD) is a dominantly inherited neurodegenerative disease caused by an expansion of the polyglutamine (polyQ) stretch in huntingtin (htt). Previously, it has been shown that inhibition of the inositol 1,4,5-trisphosphate receptor type 1 (IP3R1) activity reduced aggregation of pathogenic polyQ proteins. Experimentally, this effect was achieved by modification of the intracellular IP3 levels or by application of IP3R1 inhibitors, such as 2-aminoethyl diphenylborinate (2-APB). Unfortunately, there are certain concerns about the 2-APB specificity and cytotoxicity. Moreover, a direct link between IP3R1 and polyQ aggregation has not been shown yet. In this study we show, that down-regulation of the IP3R1 levels by shRNA reduced the aggregation of mutant htt. We tested 2-APB analogs in an attempt to identify less toxic and more IP3R1-specific compounds and found that the effect of these analogs on the reduction of the mutant htt aggregation did weakly correlate with their inhibitory action toward the IP3-induced Ca(2+) release (IICR). Their effect on aggregation was not correlated with the store-operated Ca(2+) entry (SOCE), which is another target of the 2-APB related compounds. Our findings suggest that besides functional contribution of the IP3R inhibition on the mutant htt aggregation there are additional mechanisms for the anti-aggregation effect of the 2-APB related compounds.


Asunto(s)
Compuestos de Boro/química , Compuestos de Boro/farmacología , Receptores de Inositol 1,4,5-Trifosfato/antagonistas & inhibidores , Receptores de Inositol 1,4,5-Trifosfato/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Péptidos/metabolismo , Animales , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Técnicas de Silenciamiento del Gen , Proteína Huntingtina , Masculino , Ratones , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , ARN Interferente Pequeño/genética , Bibliotecas de Moléculas Pequeñas
20.
Biochim Biophys Acta ; 1812(12): 1577-83, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21946215

RESUMEN

Aggregation of TAR DNA binding protein-43 (TDP-43) is a hallmark feature of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Under pathogenic conditions, abnormal cleavage of TDP-43 produces the phosphorylated C-terminal fragments (CTFs), which are enriched in neuronal inclusions; however, molecular properties of those TDP-43 fragments remain to be characterized. Here we show distinct degrees of solubility and phosphorylation among fragments truncated at different sites of TDP-43. Truncations were tested mainly within a second RNA recognition motif (RRM2) of TDP-43; when the truncation site was more C-terminal in an RRM2 domain, a TDP-43 CTF basically became less soluble and more phosphorylated in differentiated Neuro2a cells. We also found that cleavage at the third ß-strand in RRM2 leads to the formation of SDS-resistant soluble oligomers. Molecular properties of TDP-43 fragments thus significantly depend upon its cleavage site, which might reflect distinct molecular pathologies among sub-types of TDP-43 proteinopathies.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Fragmentos de Péptidos/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Humanos , Cuerpos de Inclusión/metabolismo , Ratones , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación Missense , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fosforilación , Transporte de Proteínas , Proteolisis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA