Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros











Intervalo de año de publicación
1.
Adv Exp Med Biol ; 1427: 185-194, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37322349

RESUMEN

In mammals, cardiorespiratory reflexes originating in the carotid body (CB) help maintain homeostasis by matching oxygen supply to oxygen demand. CB output to the brainstem is shaped by synaptic interactions at a "tripartite synapse" consisting of chemosensory (type I) cells, abutting glial-like (type II) cells, and sensory (petrosal) nerve terminals. Type I cells are stimulated by several blood-borne metabolic stimuli, including the novel chemoexcitant lactate. During chemotransduction, type I cells depolarize and release a multitude of excitatory and inhibitory neurotransmitters/neuromodulators including ATP, dopamine (DA), histamine, and angiotensin II (ANG II). However, there is a growing appreciation that the type II cells may not be silent partners. Thus, similar to astrocytes at "tripartite synapses" in the CNS, type II cells may contribute to the afferent output by releasing "gliotransmitters" such as ATP. Here, we first consider whether type II cells can also sense lactate. Next, we review and update the evidence supporting the roles of ATP, DA, histamine, and ANG II in cross talk among the three main CB cellular elements. Importantly, we consider how conventional excitatory and inhibitory pathways, together with gliotransmission, help to coordinate activity within this network and thereby modulate afferent firing frequency during chemotransduction.


Asunto(s)
Cuerpo Carotídeo , Hormonas Peptídicas , Animales , Cuerpo Carotídeo/fisiología , Histamina/metabolismo , Neurotransmisores/metabolismo , Sinapsis/metabolismo , Dopamina/metabolismo , Adenosina Trifosfato/metabolismo , Oxígeno/metabolismo , Células Quimiorreceptoras/metabolismo , Mamíferos/metabolismo
2.
Int J Mol Sci ; 21(15)2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32751703

RESUMEN

Dopamine (DA) is a well-studied neurochemical in the mammalian carotid body (CB), a chemosensory organ involved in O2 and CO2/H+ homeostasis. DA released from receptor (type I) cells during chemostimulation is predominantly inhibitory, acting via pre- and post-synaptic dopamine D2 receptors (D2R) on type I cells and afferent (petrosal) terminals respectively. By contrast, co-released ATP is excitatory at postsynaptic P2X2/3R, though paracrine P2Y2R activation of neighboring glial-like type II cells may boost further ATP release. Here, we tested the hypothesis that DA may also inhibit type II cell function. When applied alone, DA (10 µM) had negligible effects on basal [Ca2+]i in isolated rat type II cells. However, DA strongly inhibited [Ca2+]i elevations (Δ[Ca2+]i) evoked by the P2Y2R agonist UTP (100 µM), an effect opposed by the D2/3R antagonist, sulpiride (1-10 µM). As expected, acute hypercapnia (10% CO2; pH 7.4), or high K+ (30 mM) caused Δ[Ca2+]i in type I cells. However, these stimuli sometimes triggered a secondary, delayed Δ[Ca2+]i in nearby type II cells, attributable to crosstalk involving ATP-P2Y2R interactions. Interestingly sulpiride, or DA store-depletion using reserpine, potentiated both the frequency and magnitude of the secondary Δ[Ca2+]i in type II cells. In functional CB-petrosal neuron cocultures, sulpiride potentiated hypercapnia-induced Δ[Ca2+]i in type I cells, type II cells, and petrosal neurons. Moreover, stimulation of type II cells with UTP could directly evoke Δ[Ca2+]i in nearby petrosal neurons. Thus, dopaminergic inhibition of purinergic signalling in type II cells may help control the integrated sensory output of the CB during hypercapnia.


Asunto(s)
Cuerpo Carotídeo/metabolismo , Dopamina/metabolismo , Receptores de Dopamina D2/genética , Receptores Purinérgicos P2Y2/genética , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Dióxido de Carbono/metabolismo , Cuerpo Carotídeo/efectos de los fármacos , Cuerpo Carotídeo/crecimiento & desarrollo , Homeostasis/genética , Hidrógeno/metabolismo , Oxígeno/metabolismo , Agonistas del Receptor Purinérgico P2Y/farmacología , Ratas , Transducción de Señal/efectos de los fármacos , Sulpirida/farmacología , Uridina Trifosfato/farmacología
3.
Am J Physiol Regul Integr Comp Physiol ; 317(3): R407-R417, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31242021

RESUMEN

High-altitude natives have evolved to overcome environmental hypoxia and provide a compelling system to understand physiological function during reductions in oxygen availability. The sympathoadrenal system plays a key role in responses to acute hypoxia, but prolonged activation of this system in chronic hypoxia may be maladaptive. Here, we examined how chronic hypoxia exposure alters adrenal catecholamine secretion and how adrenal function is altered further in high-altitude natives. Populations of deer mice (Peromyscus maniculatus) native to low and high altitudes were each born and raised in captivity at sea level, and adults from each population were exposed to normoxia or hypobaric hypoxia for 5 mo. Using carbon fiber amperometry on adrenal slices, catecholamine secretion evoked by low doses of nicotine (10 µM) or acute hypoxia (Po2 ∼15-20 mmHg) was reduced in lowlanders exposed to hypobaric hypoxia, which was attributable mainly to a decrease in quantal charge rather than event frequency. However, secretion evoked by high doses of nicotine (50 µM) was unaffected. Hypobaric hypoxia also reduced plasma epinephrine and protein expression of 3,4-dihydroxyphenylalanine (DOPA) decarboxylase in the adrenal medulla of lowlanders. In contrast, highlanders were unresponsive to hypobaric hypoxia, exhibiting typically low adrenal catecholamine secretion, plasma epinephrine, and DOPA decarboxylase. Highlanders also had consistently lower catecholamine secretion evoked by high nicotine, smaller adrenal medullae with fewer chromaffin cells, and a larger adrenal cortex compared with lowlanders across both acclimation environments. Our results suggest that plastic responses to chronic hypoxia along with evolved changes in adrenal function attenuate catecholamine release in deer mice at high altitude.


Asunto(s)
Médula Suprarrenal/metabolismo , Altitud , Catecolaminas/metabolismo , Regulación de la Expresión Génica/fisiología , Peromyscus/metabolismo , Distribución Animal , Animales , Catecolaminas/genética , Hipoxia , Nicotina/farmacología , Oxígeno , Consumo de Oxígeno/fisiología
4.
Exp Physiol ; 104(2): 244-253, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30456914

RESUMEN

NEW FINDINGS: What is the central question of this study? The mammalian carotid body (CB) is a peripheral chemoreceptor organ involved in O2 and CO2 /H+ homeostasis. Recent studies suggest that 5-HT, released from CB receptor cells, can stimulate adjacent glial-like type II cells, leading to an increase in intracellular Ca2+ (Δ[Ca2+ ]i ) and activation of ATP-permeable pannexin-1 (Panx-1) channels. The aim of this study was to elucidate the role of protein kinases in the 5-HT-[Ca2+ ]i -Panx-1 signalling pathway. What is the main finding and its importance? Src family kinase and protein kinase A, acting downstream from Δ[Ca2+ ]i , played central roles in 5-HT-mediated Panx-1 channel activation. This provides new insight into mechanisms regulating CB excitation, especially in pathophysiological conditions. ABSTRACT: Chemoreceptor (type I) cells of the rodent carotid body (CB) synthesize and release several neurotransmitters/neuromodulators, including 5-hydroxytryptamine (5-HT), implicated in enhanced CB excitation after exposure to chronic intermittent hypoxia, e.g. sleep apnoea. However, recent studies suggest that 5-HT can robustly stimulate adjacent glial-like type II cells via ketanserin-sensitive 5-HT2 receptors, leading to intracellular Ca2+ elevation (Δ[Ca2+ ]i ) and activation of ATP-permeable pannexin-1 (Panx-1) channels. Using dissociated rat CB cultures, we investigated the role of protein kinases in the intracellular signalling pathways in type II cells. In isolated type II cells, 5-HT activated a Panx-1-like inward current (I5-HT ) that was reversibly inhibited by the Src family kinase inhibitor PP2 (1 µm), but not by its inactive analogue, PP3 (1 µm). Moreover, I5-HT was reversibly inhibited (>90%) by H89 (1 µm), a protein kinase A blocker, whereas the protein kinase C blocker GF109203X (2 µm) was largely ineffective. In contrast, the P2Y2R agonist UTP (100 µm) activated Panx-1-like currents that were reversibly inhibited (∼60%) by either H89 or GF109203X. Using fura-2 spectrofluorimetry, the 5-HT-induced Δ[Ca2+ ]i was unaffected by PP2, H89 and GF109293X, suggesting that the kinases acted downstream of the Ca2+ rise. Given that intracellular Ca2+ chelation was previously shown to block receptor-mediated Panx-1 current activation in type II cells, these data suggest that CB neuromodulators use overlapping, but not necessarily identical, signalling pathways to activate Panx-1 channels and release ATP, a CB excitatory neurotransmitter. In conclusion, these studies provide new mechanistic insight into 5-HT signalling in the CB that has pathophysiological relevance.


Asunto(s)
Calcio/metabolismo , Cuerpo Carotídeo/metabolismo , Conexinas/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/metabolismo , Proteína Quinasa C/metabolismo , Serotonina/metabolismo , Animales , Células Cultivadas , Células Quimiorreceptoras/metabolismo , Neurotransmisores/metabolismo , Ratas , Ratas Wistar , Transducción de Señal/fisiología
5.
Adv Exp Med Biol ; 1071: 43-50, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30357732

RESUMEN

The mammalian carotid body (CB) is the main peripheral arterial chemoreceptor organ that is excited by decreases in blood PO2 (hypoxia) and increases in blood PCO2/H+. An increase in CB afferent carotid sinus nerve (CSN) discharge results in respiratory and cardiovascular reflex responses that help maintain homeostasis. The CB consists mainly of innervated clusters of the chemoreceptive type I (glomus) cells that are associated with the processes of glial-like type II cells. Extracellular ATP and adenosine (ADO) levels increase in response to acute hypoxia and there is evidence that during chronic sustained hypoxia ADO elevation plays a major role in regulating CB chemosensitivity and CSN discharge. We recently characterized the molecular identities of ectonucleotidase enzymes involved in regulating extracellular ATP hydrolysis to produce ADO in the rat CB. In the present study, we focus on a molecular characterization of the equilibrative nucleoside transporter (ENT) system that is known to regulate extracellular ADO concentrations in the rat CB based on pharmacological studies. Examination of ENT expression using quantitative PCR (qPCR) analysis revealed the expression of both ENT1 and ENT2 mRNAs in whole CB extracts from ~2-week-old juvenile rats. In dissociated rat CB cultures, both ENT1 and ENT2 immunoreactivity was localized to type I cell clusters. Furthermore, we show that ENT1 and ENT2 mRNA expression is downregulated in CBs isolated from rat pups exposed to chronic hypobaric hypoxia (~1 week). These findings reveal the molecular identities of the ENT system expressed in the rat CB and are consistent with the proposed shift to ADO signaling during chronic hypoxia.


Asunto(s)
Cuerpo Carotídeo/fisiología , Hipoxia , Proteínas de Transporte de Nucleósidos/fisiología , Adenosina/fisiología , Animales , Ratas
6.
Front Physiol ; 9: 225, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29615922

RESUMEN

Maintenance of homeostasis in the respiratory and cardiovascular systems depends on reflexes that are initiated at specialized peripheral chemoreceptors that sense changes in the chemical composition of arterial blood. In mammals, the bilaterally-paired carotid bodies (CBs) are the main peripheral chemoreceptor organs that are richly vascularized and are strategically located at the carotid bifurcation. The CBs contribute to the maintenance of O2, CO2/H+, and glucose homeostasis and have attracted much clinical interest because hyperactivity in these organs is associated with several pathophysiological conditions including sleep apnea, obstructive lung disease, heart failure, hypertension, and diabetes. In response to a decrease in O2 availability (hypoxia) and elevated CO2/H+ (acid hypercapnia), CB receptor type I (glomus) cells depolarize and release neurotransmitters that stimulate apposed chemoafferent nerve fibers. The central projections of those fibers in turn activate cardiorespiratory centers in the brainstem, leading to an increase in ventilation and sympathetic drive that helps restore blood PO2 and protect vital organs, e.g., the brain. Significant progress has been made in understanding how neurochemicals released from type I cells such as ATP, adenosine, dopamine, 5-HT, ACh, and angiotensin II help shape the CB afferent discharge during both normal and pathophysiological conditions. However, type I cells typically occur in clusters and in addition to their sensory innervation are ensheathed by the processes of neighboring glial-like, sustentacular type II cells. This morphological arrangement is reminiscent of a "tripartite synapse" and emerging evidence suggests that paracrine stimulation of type II cells by a variety of CB neurochemicals may trigger the release of "gliotransmitters" such as ATP via pannexin-1 channels. Further, recent data suggest novel mechanisms by which dopamine, acting via D2 receptors (D2R), may inhibit action potential firing at petrosal nerve endings. This review will update current ideas concerning the presynaptic and postsynaptic mechanisms that underlie chemosensory processing in the CB. Paracrine signaling pathways will be highlighted, and particularly those that allow the glial-like type II cells to participate in the integrated sensory response during exposures to chemostimuli, including acute and chronic hypoxia.

7.
Physiol Genomics ; 50(4): 255-262, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29521602

RESUMEN

Mammalian carotid bodies (CB) are chemosensory organs that mediate compensatory cardiorespiratory reflexes in response to low blood PO2 (hypoxemia) and elevated CO2/H+ (acid hypercapnia). The chemoreceptors are glomus or type I cells that occur in clusters enveloped by neighboring glial-like type II cells. During chemoexcitation type I cells depolarize, leading to Ca2+-dependent release of several neurotransmitters, some excitatory and others inhibitory, that help shape the afferent carotid sinus nerve (CSN) discharge. Among the predominantly excitatory neurotransmitters are the purines ATP and adenosine, whereas dopamine (DA) is inhibitory in most species. There is a consensus that ATP and adenosine, acting via postsynaptic ionotropic P2X2/3 receptors and pre- and/or postsynaptic A2 receptors respectively, are major contributors to the increased CSN discharge during chemoexcitation. However, it has been proposed that the CB sensory output is also tuned by paracrine signaling pathways, involving glial-like type II cells. Indeed, type II cells express functional receptors for several excitatory neurochemicals released by type I cells including ATP, 5-HT, ACh, angiotensin II, and endothelin-1. Stimulation of the corresponding G protein-coupled receptors increases intracellular Ca2+, leading to the further release of ATP through pannexin-1 channels. Recent evidence suggests that other CB neurochemicals, e.g., histamine and DA, may actually inhibit Ca2+ signaling in subpopulations of type II cells. Here, we review evidence supporting neurotransmitter-mediated crosstalk between type I and type II cells of the rat CB. We also consider the potential contribution of paracrine signaling and purinergic catabolic pathways to the integrated sensory output of the CB during chemotransduction.


Asunto(s)
Cuerpo Carotídeo/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Cuerpo Carotídeo/efectos de los fármacos , Células Quimiorreceptoras/efectos de los fármacos , Células Quimiorreceptoras/metabolismo , Endotelina-1/farmacología , Humanos , Receptores Muscarínicos/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Serotonina/farmacología
8.
J Physiol ; 596(15): 3101-3117, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-28801916

RESUMEN

KEY POINTS: Adenosine and dopamine (DA) are neuromodulators in the carotid body (CB) chemoafferent pathway, but their mechanisms of action are incompletely understood. Using functional co-cultures of rat CB chemoreceptor (type I) cells and sensory petrosal neurons (PNs), we show that adenosine enhanced a hyperpolarization-activated cation current Ih in chemosensory PNs via A2a receptors, whereas DA had the opposite effect via D2 receptors. Adenosine caused a depolarizing shift in the Ih activation curve and increased firing frequency, whereas DA caused a hyperpolarizing shift in the curve and decreased firing frequency. Acute hypoxia and isohydric hypercapnia depolarized type I cells concomitant with increased excitation of adjacent PNs; the A2a receptor blocker SCH58261 inhibited both type I and PN responses during hypoxia, but only the PN response during isohydric hypercapnia. We propose that adenosine and DA control firing frequency in chemosensory PNs via their opposing actions on Ih . ABSTRACT: Adenosine and dopamine (DA) act as neurotransmitters or neuromodulators at the carotid body (CB) chemosensory synapse, but their mechanisms of action are not fully understood. Using a functional co-culture model of rat CB chemoreceptor (type I) cell clusters and juxtaposed afferent petrosal neurons (PNs), we tested the hypothesis that adenosine and DA act postsynaptically to modulate a hyperpolarization-activated, cyclic nucleotide-gated (HCN) cation current (Ih ). In whole-cell recordings from hypoxia-responsive PNs, cAMP mimetics enhanced Ih whereas the HCN blocker ZD7288 (2 µm) reversibly inhibited Ih . Adenosine caused a potentiation of Ih (EC50 ∼ 35 nm) that was sensitive to the A2a blocker SCH58261 (5 nm), and an ∼16 mV depolarizing shift in V½ for voltage dependence of Ih activation. By contrast, DA (10 µm) caused an inhibition of Ih that was sensitive to the D2 blocker sulpiride (1-10 µm), and an ∼11 mV hyperpolarizing shift in V½ . Sulpiride potentiated Ih in neurons adjacent to, but not distant from, type I cell clusters. DA also decreased PN action potential frequency whereas adenosine had the opposite effect. During simultaneous paired recordings, SCH58261 inhibited both the presynaptic hypoxia-induced receptor potential in type I cells and the postsynaptic PN response. By contrast, SCH58261 inhibited only the postsynaptic PN response induced by isohydric hypercapnia. Confocal immunofluorescence confirmed the localization of HCN4 subunits in tyrosine hydroxylase-positive chemoafferent neurons in tissue sections of rat petrosal ganglia. These data suggest that adenosine and DA, acting through A2a and D2 receptors respectively, regulate PN excitability via their opposing actions on Ih .


Asunto(s)
Adenosina/farmacología , Dopamina/farmacología , Neuronas/efectos de los fármacos , Animales , Células Cultivadas , Técnicas de Cocultivo , Ganglio Geniculado/citología , Ganglio Geniculado/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Neuronas/fisiología , Canales de Potasio/metabolismo , Ratas Wistar
9.
Am J Physiol Cell Physiol ; 313(3): C274-C284, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28637679

RESUMEN

The carotid body (CB) chemoreflex maintains blood Po2 and Pco2/H+ homeostasis and displays sensory plasticity during exposure to chronic hypoxia. Purinergic signaling via P1 and P2 receptors plays a pivotal role in shaping the afferent discharge at the sensory synapse containing catecholaminergic chemoreceptor (type I) cells, glial-like type II cells, and sensory (petrosal) nerve endings. However, little is known about the family of ectonucleotidases that control synaptic nucleotide levels. Using quantitative PCR (qPCR), we first compared expression levels of ectonucleoside triphosphate diphosphohydrolases (NTPDases1,2,3,5,6) and ecto-5'-nucleotidase (E5'Nt/CD73) mRNAs in juvenile rat CB vs. brain, petrosal ganglia, sympathetic (superior cervical) ganglia, and a sympathoadrenal chromaffin (MAH) cell line. In whole CB extracts, qPCR revealed a high relative expression of surface-located members NTPDase1,2 and E5'Nt/CD73, compared with low NTPDase3 expression. Immunofluorescence staining of CB sections or dissociated CB cultures localized NTPDase2,3 and E5'Nt/CD73 protein to the periphery of type I clusters, and in association with sensory nerve fibers and/or isolated type II cells. Interestingly, in CBs obtained from rats reared under chronic hypobaric hypoxia (~60 kPa, equivalent to 4,300 m) for 5-7 days, in addition to the expected upregulation of tyrosine hydroxylase and VEGF mRNAs, there was a significant upregulation of NTPDase3 and E5'Nt/CD73 mRNA, but a downregulation of NTPDase1 and NTPDase2 relative to normoxic controls. We conclude that NTPDase1,2,3 and E5'Nt/CD73 are the predominant surface-located ectonucleotidases in the rat CB and suggest that their differential regulation during chronic hypoxia may contribute to CB plasticity via control of synaptic ATP, ADP, and adenosine pools.


Asunto(s)
5'-Nucleotidasa/metabolismo , Encéfalo/enzimología , Cuerpo Carotídeo/enzimología , Regulación Enzimológica de la Expresión Génica , Hipoxia/metabolismo , Plasticidad Neuronal , Nervios Periféricos/enzimología , Animales , Enfermedad Crónica , Femenino , Masculino , Ratas , Ratas Wistar
10.
J Physiol ; 595(13): 4261-4277, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28332205

RESUMEN

KEY POINTS: 5-HT is a neuromodulator released from carotid body (CB) chemoreceptor (type I) cells and facilitates the sensory discharge following chronic intermittent hypoxia (CIH). In the present study, we show that, in addition to type I cells, adjacent glial-like type II cells express functional, ketanserin-sensitive 5-HT2 receptors, and their stimulation increases cytoplasmic Ca2+ derived from intracellular stores. In type II cells, 5-HT activated a ketanserin-sensitive inward current (I5-HT ) that was similar to that (IUTP ) activated by the P2Y2R agonist, UTP. As previously shown for IUTP , I5-HT was inhibited by BAPTA-AM and carbenoxolone (5 µm), a putative blocker of ATP-permeable pannexin (Panx)-1 channels; IUTP was reversibly inhibited by the specific Panx-1 mimetic peptide channel blocker, 10 Panx peptide. Paracrine stimulation of type II cells by 5-HT, leading to ATP release via Panx-1 channels, may contribute to CB excitability, especially in pathophysiological conditions associated with CIH (e.g. obstructive sleep apnoea). ABSTRACT: Carotid body (CB) chemoreceptor (type I) cells can synthesize and release 5-HT and increased autocrine-paracrine 5-HT2 receptor signalling contributes to sensory long-term facilitation during chronic intermittent hypoxia (CIH). However, recent studies suggest that adjacent glial-like type II cells can respond to CB paracrine signals by elevating intracellular calcium (Δ[Ca2+ ]i ) and activating carbenoxolone-sensitive, ATP-permeable, pannexin (Panx)-1-like channels. In the present study, using dissociated rat CB cultures, we found that 5-HT induced Δ[Ca2+ ]i responses in a subpopulation of type I cells, as well as in most (∼67%) type II cells identified by their sensitivity to the P2Y2 receptor agonist, UTP. The 5-HT-induced Ca2+ response in type II cells was dose-dependent (EC50 ∼183 nm) and largely inhibited by the 5-HT2A receptor blocker, ketanserin (1 µm), and also arose mainly from intracellular stores. 5-HT also activated an inward current (I5-HT ) in type II cells (EC50 ∼200 nm) that was reversibly inhibited by ketanserin (1-10 nm), the Ca2+ chelator BAPTA-AM (5 µm), and low concentrations of carbenoxolone (5 µm), a putative Panx-1 channel blocker. I5-HT reversed direction at approximately -11 mV and was indistinguishable from the UTP-activated current (IUTP ). Consistent with a role for Panx-1 channels, IUTP was reversibly inhibited by the specific Panx-1 mimetic peptide blocker 10 Panx (100 µm), although not by its scrambled control peptide (sc Panx). Because ATP is an excitatory CB neurotransmitter, it is possible that the contribution of enhanced 5-HT signalling to the increased sensory discharge during CIH may occur, in part, by a boosting of ATP release from type II cells via Panx-1 channels.


Asunto(s)
Potenciales de Acción , Señalización del Calcio , Cuerpo Carotídeo/metabolismo , Células Quimiorreceptoras/metabolismo , Conexinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Agonistas de Receptores de Serotonina/farmacología , Serotonina/farmacología , Animales , Carbenoxolona/farmacología , Cuerpo Carotídeo/citología , Células Cultivadas , Células Quimiorreceptoras/efectos de los fármacos , Conexinas/antagonistas & inhibidores , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Antagonistas del Receptor Purinérgico P2Y/farmacología , Ratas , Ratas Wistar
11.
J Physiol ; 594(2): 391-406, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26537220

RESUMEN

KEY POINTS: Carotid body chemoreceptors are organized in clusters containing receptor type I and contiguous glial-like type II cells. While type I cells depolarize and release ATP during chemostimulation, the role of type II cells which express purinergic P2Y2 receptors (P2Y2Rs) and ATP-permeable pannexin-1 (Panx-1) channels, is unclear. Here, we show that in isolated rat chemoreceptor clusters, type I cell depolarization induced by hypoxia, hypercapnia, or high K(+) caused delayed intracellular Ca(2+) elevations (Δ[Ca(2+)]i) in nearby type II cells that were inhibited by the P2Y2R blocker suramin, or by the nucleoside hydrolase apyrase. Likewise, stimulation of P2Y2Rs on type II cells caused a delayed, secondary Δ[Ca(2+)]i in nearby type I cells that was inhibited by blockers of Panx-1 channels, adenosine A2A receptors and 5'-ectonucleotidase. We propose that reciprocal crosstalk between type I and type II cells contributes to sensory processing in the carotid body via purinergic signalling pathways. ABSTRACT: The mammalian carotid body (CB) is excited by blood-borne stimuli including hypoxia and acid hypercapnia, leading to respiratory and cardiovascular reflex responses. This chemosensory organ consists of innervated clusters of receptor type I cells, ensheathed by processes of adjacent glial-like type II cells. ATP is a major excitatory neurotransmitter released from type I cells and type II cells express purinergic P2Y2 receptors (P2Y2Rs), the activation of which leads to the opening of ATP-permeable, pannexin-1 (Panx-1) channels. While these properties support crosstalk between type I and type II cells during chemotransduction, direct evidence is lacking. To address this, we first exposed isolated rat chemoreceptor clusters to acute hypoxia, isohydric hypercapnia, or the depolarizing stimulus high K(+), and monitored intracellular [Ca(2+)] using Fura-2. As expected, these stimuli induced intracellular [Ca(2+)] elevations (Δ[Ca(2+)]i) in type I cells. Interestingly, however, there was often a delayed, secondary Δ[Ca(2+)]i in nearby type II cells that was reversibly inhibited by the P2Y2R antagonist suramin, or by the nucleoside hydrolase apyrase. By contrast, type II cell stimulation with the P2Y2R agonist uridine-5'-triphosphate (100 µm) often led to a delayed, secondary Δ[Ca(2+)]i response in nearby type I cells that was reversibly inhibited by the Panx-1 blocker carbenoxolone (5 µm). This Δ[Ca(2+)]i response was also strongly inhibited by blockers of either the adenosine A2A receptor (SCH 58261) or of the 5'-ectonucleotidase (AOPCP), suggesting it was due to adenosine arising from breakdown of ATP released through Panx-1 channels. Collectively, these data strongly suggest that purinergic signalling mechanisms mediate crosstalk between CB chemoreceptor and glial cells during chemotransduction.


Asunto(s)
Señalización del Calcio , Cuerpo Carotídeo/metabolismo , Conexinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Animales , Dióxido de Carbono/metabolismo , Cuerpo Carotídeo/citología , Células Cultivadas , Neuroglía/metabolismo , Oxígeno/metabolismo , Ratas , Ratas Wistar
12.
Adv Exp Med Biol ; 860: 41-7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26303465

RESUMEN

The carotid body (CB) chemosensory complex uses ATP as a key excitatory neurotransmitter that is the main contributor to the sensory discharge during acute hypoxia. The complex includes receptor type I cells, which depolarize and release various neurochemicals including ATP during hypoxia, and contiguous glial-like type II cells which express purinergic P2Y2 receptors (P2Y2R). We previously showed that activation of P2Y2R on rat type II cells led to the opening of pannexin-1 (Panx-1) channels, which acted as conduits for the further release of ATP. More recently, we considered the possibility that other CB neuromodulators may have a similar paracrine role, leading to the activation of type II cells. Here, we examine the evidence that angiotensin II (ANG II), endothelin- (ET-1), and muscarinic agonists (e.g. acetylcholine, ACh) may activate intracellular Ca(2+) signals in type II cells and, in the case of ANG II and ACh, Panx-1 currents as well. Using ratiometric Ca(2+) imaging, we found that a substantial population of type II cells responded to 100 nM ANG II with a robust rise in intracellular Ca(2+) and activation of Panx-1 current. Both effects of ANG II were mediated via AT(1) receptors (AT(1)Rs) and current activation could be inhibited by the Panx-1 channel blocker, carbenoxolone (CBX; 5 µM). Additionally, low concentrations of ET-1 (1 nM) evoked robust intracellular Ca(2+) responses in subpopulations of type II cells. The mAChR agonist muscarine (10 µM) also induced a rise in intracellular Ca(2+) in some type II cells, and preliminary perforated-patch, whole-cell recordings revealed that ACh (10 µM) may activate Panx-1-like currents. These data suggest that paracrine activation of type II cells by endogenous neuromodulators may be a common feature of signal processing in the rat CB.


Asunto(s)
Cuerpo Carotídeo/fisiología , Neuroglía/fisiología , Comunicación Paracrina/fisiología , Acetilcolina/farmacología , Adenosina Trifosfato/metabolismo , Angiotensina II/farmacología , Animales , Calcio/metabolismo , Cuerpo Carotídeo/citología , Células Cultivadas , Endotelina-1/farmacología , Ratas , Receptor de Angiotensina Tipo 1/fisiología
13.
Am J Physiol Cell Physiol ; 307(3): C266-77, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24898587

RESUMEN

At birth, asphyxial stressors such as hypoxia and hypercapnia are important physiological stimuli for adrenal catecholamine release that is critical for the proper transition to extrauterine life. We recently showed that chronic opioids blunt chemosensitivity of neonatal rat adrenomedullary chromaffin cells (AMCs) to hypoxia and hypercapnia. This blunting was attributable to increased ATP-sensitive K(+) (KATP) channel and decreased carbonic anhydrase (CA) I and II expression, respectively, and involved µ- and δ-opioid receptor signaling pathways. To address underlying molecular mechanisms, we first exposed an O2- and CO2-sensitive, immortalized rat chromaffin cell line (MAH cells) to combined µ {[d-Arg(2),Ly(4)]dermorphin-(1-4)-amide}- and δ ([d-Pen(2),5,P-Cl-Phe(4)]enkephalin)-opioid agonists (2 µM) for ∼7 days. Western blot and quantitative real-time PCR analysis revealed that chronic opioids increased KATP channel subunit Kir6.2 and decreased CAII expression; both effects were blocked by naloxone and were absent in hypoxia-inducible factor (HIF)-2α-deficient MAH cells. Chronic opioids also stimulated HIF-2α accumulation along a time course similar to Kir6.2. Chromatin immunoprecipitation assays on opioid-treated cells revealed the binding of HIF-2α to a hypoxia response element in the promoter region of the Kir6.2 gene. The opioid-induced regulation of Kir6.2 and CAII was dependent on protein kinase A, but not protein kinase C or calmodulin kinase, activity. Interestingly, a similar pattern of HIF-2α, Kir6.2, and CAII regulation (including downregulation of CAI) was replicated in chromaffin tissue obtained from rat pups born to dams exposed to morphine throughout gestation. Collectively, these data reveal novel mechanisms by which chronic opioids blunt asphyxial chemosensitivity in AMCs, thereby contributing to abnormal arousal responses in the offspring of opiate-addicted mothers.


Asunto(s)
Células Cromafines/metabolismo , Canales KATP/biosíntesis , Canales de Potasio de Rectificación Interna/biosíntesis , Receptores Opioides delta/agonistas , Receptores Opioides mu/agonistas , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , Corteza Suprarrenal/citología , Corteza Suprarrenal/metabolismo , Médula Suprarrenal/citología , Médula Suprarrenal/metabolismo , Analgésicos Opioides/farmacología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/antagonistas & inhibidores , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Anhidrasa Carbónica I/biosíntesis , Anhidrasa Carbónica II/biosíntesis , Hipoxia de la Célula , Línea Celular , Células Cromafines/citología , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Dopamina/metabolismo , Encefalina D-Penicilamina (2,5)/farmacología , Inhibidores Enzimáticos/farmacología , Femenino , Hipercapnia , Indoles/farmacología , Isoquinolinas/farmacología , Canales KATP/genética , Maleimidas/farmacología , Morfina/farmacología , Naloxona/farmacología , Antagonistas de Narcóticos/farmacología , Norepinefrina/metabolismo , Oligopéptidos/farmacología , Canales de Potasio de Rectificación Interna/genética , Embarazo , Regiones Promotoras Genéticas , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Ratas , Ratas Wistar , Sulfonamidas/farmacología
14.
J Physiol ; 592(16): 3419-26, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24665097

RESUMEN

Mammalian carotid bodies are the main peripheral arterial chemoreceptors, strategically located at the bifurcation of the common carotid artery. When stimulated these receptors initiate compensatory respiratory and cardiovascular reflexes to maintain homeostasis. Thus, in response to low oxygen (hypoxia) or increased CO2/H(+) (acid hypercapnia), chemoreceptor type I cells depolarize and release excitatory neurotransmitters, such as ATP, which stimulate postsynaptic P2X2/3 receptors on afferent nerve terminals. The afferent discharge is shaped by autocrine and paracrine mechanisms involving both excitatory and inhibitory neuromodulators such as adenosine, serotonin (5-HT), GABA and dopamine. Recent evidence suggests that paracrine activation of P2Y2 receptors on adjacent glia-like type II cells may help boost the ATP signal via the opening of pannexin-1 channels. The presence of an inhibitory efferent innervation, mediated by release of nitric oxide, provides additional control of the afferent discharge. The broad array of neuromodulators and their receptors appears to endow the carotid body with a remarkable plasticity, most apparent during natural and pathophysiological conditions associated with chronic sustained and intermittent hypoxia.


Asunto(s)
Arterias/metabolismo , Cuerpo Carotídeo/metabolismo , Comunicación Paracrina , Transmisión Sináptica , Animales , Arterias/fisiología , Cuerpo Carotídeo/citología , Cuerpo Carotídeo/fisiología , Humanos , Oxígeno/metabolismo , Receptores Purinérgicos P2X/metabolismo
15.
Am J Physiol Cell Physiol ; 305(7): C739-50, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23885058

RESUMEN

Chronic hypoxia (CHox) augments chemoafferent activity in sensory fibers innervating carotid body (CB) chemoreceptor type I cells; however, the underlying mechanisms are poorly understood. We tested the hypothesis that enhanced paracrine signaling via adenosine (Ado) A2b receptors is involved. Dissociated rat CB cultures were exposed for 24 h to normoxia (Nox, 21% O2) or CHox (2% O2) or treated with the hypoxia mimetic deferoxamine mesylate (DFX), and catecholamine secretion from type I cells was monitored by amperometry. Catecholamine secretion was more robust in CHox and DFX type I cells than Nox controls after acute exposure to acid hypercapnia (10% CO2, pH 7.1) and high K(+) (75 mM). Exogenous Ado increased catecholamine secretion in a dose-dependent manner, and the EC50 was shifted to the right from ∼21 µM Ado in Nox cells to ∼78 µM in CHox cells. Ado-evoked secretion in Nox and CHox cells was markedly inhibited by MRS-1754, an A2b receptor blocker, but was unaffected by SCH-58261, an A2a receptor blocker. Similarly, MRS-1754, but not SCH-58261, partially inhibited high-K(+)-evoked catecholamine secretion, suggesting a contribution from paracrine activation of A2b receptors by endogenous Ado. CB chemostimuli, acid hypercapnia, and hypoxia elicited a MRS-1754-sensitive rise in intracellular Ca(2+) that was more robust in CHox and DFX than Nox cells. Taken together, these data suggest that paracrine Ado A2b receptor signaling contributes to stimulus-evoked catecholamine secretion in Nox and CHox CB chemoreceptors; however, the effects of Ado are more robust after CHox.


Asunto(s)
Cuerpo Carotídeo/metabolismo , Catecolaminas/metabolismo , Comunicación Paracrina , Receptor de Adenosina A2B/metabolismo , Transducción de Señal , Adenosina/farmacología , Antagonistas del Receptor de Adenosina A2/farmacología , Animales , Cuerpo Carotídeo/efectos de los fármacos , Hipoxia de la Célula , Células Cultivadas , Deferoxamina/farmacología , Relación Dosis-Respuesta a Droga , Potenciales de la Membrana , Comunicación Paracrina/efectos de los fármacos , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
16.
Exp Physiol ; 98(7): 1199-212, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23525247

RESUMEN

The mammalian carotid body (CB) is a peripheral chemosensory organ that controls ventilation and is innervated by both afferent and efferent nerve fibres. The afferent pathway is stimulated by chemoexcitants, such as hypoxia, hypercapnia and acidosis. The efferent pathway causes inhibition of the sensory discharge via release of NO that originates mainly from neuronal nitric oxide synthase (nNOS)-positive autonomic neurones within the glossopharyngeal nerve (GPN). Recent studies in the rat indicate that these inhibitory GPN neurones and their processes express purinergic P2X receptors and can be activated by ATP, a key excitatory CB neurotransmitter. Here we tested the hypothesis that purinergic agonists stimulate a rise in [Ca(2+)]i, leading to nNOS activation and NO production in isolated GPN neurones, using the fluorescent probes fura-2 and 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM DA), respectively. ATP caused a dose-dependent increase in [Ca(2+)]i in GPN neurones (EC50 ≈ 1.92 µm) that was markedly inhibited by a combination of 100 µm suramin (a non-specific P2X blocker) and 100 nm Brilliant Blue G (a selective P2X7 blocker). ATP also stimulated NO production in GPN neurones, as revealed by an increase in DAF fluorescence; this NO signal was inhibited by purinergic blockers, chelators of extracellular Ca(2+), the nNOS inhibitor l-NAME and the NO scavenger carboxy-PTIO. The P2X2/3 and P2X7 agonists α,ß,-methylene ATP and benzoyl ATP mimicked the effects of ATP. Taken together, these data indicate that ATP may contribute to negative feedback inhibition of CB sensory discharge via purinergic stimulation of NO production in efferent fibres.


Asunto(s)
Calcio/metabolismo , Cuerpo Carotídeo/metabolismo , Nervio Glosofaríngeo/metabolismo , Óxido Nítrico/metabolismo , Receptores Purinérgicos P2X/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Canales de Calcio/metabolismo , Cuerpo Carotídeo/efectos de los fármacos , Nervio Glosofaríngeo/efectos de los fármacos , Nervio Glosofaríngeo/fisiología , Potenciales de la Membrana/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo I/metabolismo , Agonistas del Receptor Purinérgico P2X/farmacología , Antagonistas del Receptor Purinérgico P2X/farmacología , Ratas , Ratas Wistar
17.
Semin Cell Dev Biol ; 24(1): 22-30, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23022231

RESUMEN

Mammalian carotid bodies are richly vascularized chemosensory organs that sense blood levels of O(2), CO(2)/H(+), and glucose and maintain homeostatic regulation of these levels via the reflex control of ventilation. Carotid bodies consist of innervated clusters of type I (or glomus) cells in intimate association with glial-like type II cells. Carotid bodies make afferent connections with fibers from sensory neurons in the petrosal ganglia and receive efferent inhibitory innervation from parasympathetic neurons located in the carotid sinus and glossopharyngeal nerves. There are synapses between type I (chemosensory) cells and petrosal afferent terminals, as well as between neighboring type I cells. There is a broad array of neurotransmitters and neuromodulators and their ionotropic and metabotropic receptors in the carotid body. This allows for complex processing of sensory stimuli (e.g., hypoxia and acid hypercapnia) involving both autocrine and paracrine signaling pathways. This review summarizes and evaluates current knowledge of these pathways and presents an integrated working model on information processing in carotid bodies. Included in this model is a novel hypothesis for a potential role of type II cells as an amplifier for the release of a key excitatory carotid body neurotransmitter, ATP, via P2Y purinoceptors and pannexin-1 channels.


Asunto(s)
Cuerpo Carotídeo/metabolismo , Células Quimiorreceptoras/metabolismo , Transducción de Señal , Adenosina Trifosfato/metabolismo , Animales , Humanos , Proteínas del Tejido Nervioso/metabolismo , Receptores Purinérgicos P2Y/metabolismo
18.
J Physiol ; 591(2): 415-22, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23165772

RESUMEN

In mammals, peripheral arterial chemoreceptors monitor blood chemicals (e.g. O(2), CO(2), H(+), glucose) and maintain homeostasis via initiation of respiratory and cardiovascular reflexes. Whereas chemoreceptors in the carotid bodies (CBs), located bilaterally at the carotid bifurcation, control primarily respiratory functions, those in the more diffusely distributed aortic bodies (ABs) are thought to regulate mainly cardiovascular functions. Functionally, CBs sense partial pressure of O(2) ( ), whereas ABs are considered sensors of O(2) content. How these organs, with essentially a similar complement of chemoreceptor cells, differentially process these two different types of signals remains enigmatic. Here, we review evidence that implicates ATP as a central mediator during information processing in the CB. Recent data allow an integrative view concerning its interactions at purinergic P2X and P2Y receptors within the chemosensory complex that contains elements of a 'quadripartite synapse'. We also discuss recent studies on the cellular physiology of ABs located near the aortic arch, as well as immunohistochemical evidence suggesting the presence of pathways for P2X receptor signalling. Finally, we present a hypothetical 'quadripartite model' to explain how ATP, released from red blood cells during hypoxia, could contribute to the ability of ABs to sense O(2) content.


Asunto(s)
Adenosina Trifosfato/metabolismo , Cuerpos Aórticos/metabolismo , Cuerpo Carotídeo/metabolismo , Células Quimiorreceptoras/metabolismo , Animales , Cuerpos Aórticos/citología , Cuerpo Carotídeo/citología , Humanos , Receptores Purinérgicos/metabolismo , Transducción de Señal
19.
J Physiol ; 590(17): 4335-50, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22733659

RESUMEN

Signal processing in the carotid body (CB) is initiated at receptor glomus (or type I) cells which depolarize and release the excitatory neurotransmitter ATP during chemoexcitation by hypoxia and acid hypercapnia. Glomus cell clusters (GCs) occur in intimate association with glia-like type II cells which express purinergic P2Y2 receptors (P2Y2Rs) but their function is unclear. Here we immunolocalize the gap junction-like protein channel pannexin-1 (Panx-1) in type II cells and show Panx-1 mRNA expression in the rat CB. As expected, type II cell activation within or near isolated GCs by P2Y2R agonists, ATP and UTP (100 µm), induced a rise in intracellular [Ca(2+)]. Moreover in perforated-patch whole cell recordings from type II cells, these agonists caused a prolonged depolarization and a concentration-dependent, delayed opening of non-selective ion channels that was prevented by Panx-1 blockers, carbenoxolone (5 µm) and 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS; 10 µm). Because Panx-1 channels serve as conduits for ATP release, we hypothesized that paracrine, type II cell P2Y2R activation leads to ATP-induced ATP release. In proof-of-principle experiments we used co-cultured chemoafferent petrosal neurones (PNs), which express P2X2/3 purinoceptors, as sensitive biosensors of ATP released from type II cells. In several cases, UTP activation of type II cells within or near GCs led to depolarization or increased firing in nearby PNs, and the effect was reversibly abolished by the selective P2X2/3 receptor blocker, pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS; 10 µm). We propose that CB type II cells may function as ATP amplifiers during chemotransduction via paracrine activation of P2Y2Rs and Panx-1 channels.


Asunto(s)
Adenosina Trifosfato/metabolismo , Cuerpo Carotídeo/citología , Cuerpo Carotídeo/metabolismo , Conexinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Conexinas/antagonistas & inhibidores , Conexinas/genética , Fenómenos Electrofisiológicos , Expresión Génica , Potenciales de la Membrana , Modelos Neurológicos , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Neurotransmisores/metabolismo , Comunicación Paracrina , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Transmisión Sináptica
20.
J Physiol ; 590(9): 2121-35, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22431340

RESUMEN

Mammalian aortic bodies (ABs) are putative peripheral arterial chemoreceptors whose function remains controversial, partly because information on their cellular physiology is lacking. In this study, we used ratiometric Ca2+ imaging to investigate for the first time chemosensitivity in short-term cultures of dissociated cells of juvenile rat ABs, located near the junction of the left vagus and recurrent laryngeal nerves. Among the surviving cell population were glomus or type I cell clusters, endogenous local neurons and glia-like cells. A variety of chemostimuli, including hypoxia, isohydric or acidic hypercapnia, and isocapnic acidosis, caused a rise in intracellular [Ca2+] in AB type I cells. The [Ca2+]i responses were indistinguishable from those in carotid body (CB) type I cells grown in parallel cultures from the same animals, and responses to acidic hypercapnia were prevented by the non-specific voltage-gated Ca2+ channel antagonist, 2mM Ni2+. Furthermore, we identified a subpopulation (∼40%) of glia-like cells in AB cultures that resembled CB type II cells based on their approximately equal sensitivity to ATP and UTP, consistent with the expression of purinergic P2Y2 receptors. Finally, we showed that some local neurons, known to be uniquely associated with these AB paraganglia in situ, generated robust [Ca2+]i responses to these chemostimuli. Thus, these AB type I cells and associated putative type II cells resemble those from the well-studied CB. Unlike the CB, however, they also associate with a special group of endogenous neurons which we propose may subserve a sensory function in local cardiovascular reflexes.


Asunto(s)
Cuerpos Aórticos/metabolismo , Señalización del Calcio , Calcio/metabolismo , Cuerpo Carotídeo/metabolismo , Oxígeno/metabolismo , Células Receptoras Sensoriales/metabolismo , Acidosis/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Cuerpos Aórticos/efectos de los fármacos , Bloqueadores de los Canales de Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Cuerpo Carotídeo/efectos de los fármacos , Hipoxia de la Célula , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Concentración de Iones de Hidrógeno , Hipercapnia/metabolismo , Microscopía Confocal , Microscopía Fluorescente , Ratas , Ratas Wistar , Receptores Purinérgicos P2Y2/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Factores de Tiempo , Uridina Trifosfato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA