Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
FASEB J ; 38(16): e70001, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39139033

RESUMEN

Interferon-gamma (IFNγ) is traditionally recognized for its pro-inflammatory role during intestinal inflammation. Here, we demonstrate that IFNγ also functions as a pro-repair molecule by increasing TNFα receptor 2 (TNFR2 protein/TNFRSF1B gene) expression on intestinal epithelial cells (IEC) following injury in vitro and in vivo. In silico analyses identified binding sites for the IFNγ signaling transcription factor STAT1 in the promoter region of TNFRSF1B. Scratch-wounded IEC exposed to IFNγ exhibited a STAT1-dependent increase in TNFR2 expression. In situ hybridization revealed elevated Tnfrsf1b mRNA levels in biopsy-induced colonic mucosal wounds, while intraperitoneal administration of IFNγ neutralizing antibodies following mucosal injury resulted in impaired IEC Tnfrsf1b mRNA and inhibited colonic mucosal repair. These findings challenge conventional notions that "pro-inflammatory" mediators solely exacerbate damage by highlighting latent pro-repair functions. Moreover, these results emphasize the critical importance of timing and amount in the synthesis and release of IFNγ and TNFα during the inflammatory process, as they are pivotal in restoring tissue homeostasis.


Asunto(s)
Colon , Interferón gamma , Mucosa Intestinal , Receptores Tipo II del Factor de Necrosis Tumoral , Factor de Transcripción STAT1 , Transducción de Señal , Interferón gamma/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Animales , Humanos , Colon/metabolismo , Colon/patología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Factor de Transcripción STAT1/metabolismo , Ratones , Cicatrización de Heridas/fisiología , Ratones Endogámicos C57BL , Masculino , Células Epiteliales/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
2.
JCI Insight ; 9(17)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078701

RESUMEN

Thrombospondin-1 (TSP1) is a matricellular protein associated with the regulation of cell migration through direct binding interactions with integrin proteins and by associating with other receptors known to regulate integrin function, including CD47 and CD36. We previously demonstrated that deletion of an epithelial TSP1 receptor, CD47, attenuates epithelial wound repair following intestinal mucosal injury. However, the mechanisms by which TSP1 contributes to intestinal mucosal repair remain poorly understood. Our results show upregulated TSP1 expression in colonic mucosal wounds and impaired intestinal mucosal wound healing in vivo upon intestinal epithelium-specific loss of TSP1 (VillinCre/+ Thbs1fl/fl or Thbs1ΔIEC mice). We report that exposure to exogenous TSP1 enhanced migration of intestinal epithelial cells in a CD47- and TGF-ß1-dependent manner and that deficiency of TSP1 in primary murine colonic epithelial cells resulted in impaired wound healing. Mechanistically, TSP1 modulated epithelial actin cytoskeletal dynamics through suppression of RhoA activity, activation of Rho family small GTPase (Rac1), and changes in filamentous-actin bundling. Overall, TSP1 was found to regulate intestinal mucosal wound healing via CD47 and TGF-ß1, coordinate integrin-containing cell-matrix adhesion dynamics, and remodel the actin cytoskeleton in migrating epithelial cells to enhance cell motility and promote wound repair.


Asunto(s)
Antígeno CD47 , Movimiento Celular , Mucosa Intestinal , Trombospondina 1 , Factor de Crecimiento Transformador beta1 , Cicatrización de Heridas , Animales , Trombospondina 1/metabolismo , Trombospondina 1/genética , Cicatrización de Heridas/fisiología , Ratones , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Antígeno CD47/metabolismo , Antígeno CD47/genética , Factor de Crecimiento Transformador beta1/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Ratones Noqueados , Proteína de Unión al GTP rac1/metabolismo , Células Epiteliales/metabolismo , Humanos , Colon/metabolismo , Colon/patología , Masculino , Neuropéptidos
3.
Nat Commun ; 15(1): 4775, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839750

RESUMEN

The metal ion transporter SLC39A8 is associated with physiological traits and diseases, including blood manganese (Mn) levels and inflammatory bowel diseases (IBD). The mechanisms by which SLC39A8 controls Mn homeostasis and epithelial integrity remain elusive. Here, we generate Slc39a8 intestinal epithelial cell-specific-knockout (Slc39a8-IEC KO) mice, which display markedly decreased Mn levels in blood and most organs. Radiotracer studies reveal impaired intestinal absorption of dietary Mn in Slc39a8-IEC KO mice. SLC39A8 is localized to the apical membrane and mediates 54Mn uptake in intestinal organoid monolayer cultures. Unbiased transcriptomic analysis identifies alkaline ceramidase 1 (ACER1), a key enzyme in sphingolipid metabolism, as a potential therapeutic target for SLC39A8-associated IBDs. Importantly, treatment with an ACER1 inhibitor attenuates colitis in Slc39a8-IEC KO mice by remedying barrier dysfunction. Our results highlight the essential roles of SLC39A8 in intestinal Mn absorption and epithelial integrity and offer a therapeutic target for IBD associated with impaired Mn homeostasis.


Asunto(s)
Ceramidasa Alcalina , Proteínas de Transporte de Catión , Enfermedades Inflamatorias del Intestino , Mucosa Intestinal , Manganeso , Ratones Noqueados , Animales , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/patología , Manganeso/metabolismo , Ratones , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Ceramidasa Alcalina/metabolismo , Ceramidasa Alcalina/genética , Humanos , Ratones Endogámicos C57BL , Homeostasis , Masculino , Colitis/metabolismo , Colitis/genética , Colitis/patología , Absorción Intestinal , Células Epiteliales/metabolismo
4.
Sci Rep ; 14(1): 10823, 2024 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734721

RESUMEN

Postoperative disease recurrence in Crohn's disease represents a relevant issue despite recent advancements in surgical and medical therapies. Additional criteria are necessary to improve the identification of patients at risk and to enable selective therapeutic approaches. The role of resection margins on disease recurrence remains unclear and general recommendations are lacking. A single-center retrospective analysis was performed including all patients who received ileocecal resection due to Crohn's disease. Resection margins were analyzed by two independent pathologists and defined by histopathological criteria based on previous consensus reports. 158 patients were included for analysis with a median follow up of 35 months. While postoperative morbidity was not affected, positive resection margins resulted in significantly increased rates of severe endoscopic recurrence at 6 months (2.0% versus 15.6%, p = 0.02) and overall (4.2% versus 19.6%, p = 0.001), which resulted in significantly increased numbers of surgical recurrence (0% versus 4.5%, p = 0.04). Additionally, positive margins were identified as independent risk factor for severe endoscopic disease recurrence in a multivariate analysis. Based on that, positive margins represent an independent risk factor for postoperative endoscopic and surgical disease recurrence. Prospective studies are required to determine whether extended resection or postoperative medical prophylaxis is beneficial for patients with positive resection margins.


Asunto(s)
Enfermedad de Crohn , Márgenes de Escisión , Recurrencia , Humanos , Enfermedad de Crohn/cirugía , Enfermedad de Crohn/patología , Masculino , Femenino , Adulto , Factores de Riesgo , Estudios Retrospectivos , Persona de Mediana Edad , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/epidemiología , Adulto Joven , Anciano , Periodo Posoperatorio
5.
J Cell Sci ; 137(9)2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38712627

RESUMEN

Tight junctions (TJs) are specialized regions of contact between cells of epithelial and endothelial tissues that form selective semipermeable paracellular barriers that establish and maintain body compartments with different fluid compositions. As such, the formation of TJs represents a critical step in metazoan evolution, allowing the formation of multicompartmental organisms and true, barrier-forming epithelia and endothelia. In the six decades that have passed since the first observations of TJs by transmission electron microscopy, much progress has been made in understanding the structure, function, molecular composition and regulation of TJs. The goal of this Perspective is to highlight the key concepts that have emerged through this research and the future challenges that lie ahead for the field.


Asunto(s)
Uniones Estrechas , Uniones Estrechas/metabolismo , Uniones Estrechas/ultraestructura , Humanos , Animales , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Células Epiteliales/citología
6.
J Nutr ; 154(4): 1153-1164, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38246358

RESUMEN

BACKGROUND: Tissue repair and regeneration in the gastrointestinal system are crucial for maintaining homeostasis, with the process relying on intricate cellular interactions and affected by micro- and macro-nutrients. Iron, essential for various biological functions, plays a dual role in tissue healing by potentially causing oxidative damage and participating in anti-inflammatory mechanisms, underscoring its complex relationship with inflammation and tissue repair. OBJECTIVE: The study aimed to elucidate the role of low dietary iron in gastrointestinal tissue repair. METHODS: We utilized quantitative iron measurements to assess iron levels in inflamed regions of patients with ulcerative colitis and Crohn's disease. In addition, 3 mouse models of gastrointestinal injury/repair (dextran sulfate sodium-induced colitis, radiation injury, and wound biopsy) were used to assess the effects of low dietary iron on tissue repair. RESULTS: We found that levels of iron in inflamed regions of both patients with ulcerative colitis and Crohn's disease are elevated. Similarly, during gastrointestinal repair, iron levels were found to be heightened, specifically in intestinal epithelial cells across the 3 injury/repair models. Mice on a low-iron diet showed compromised tissue repair with reduced proliferation. In standard diet, epithelial cells and the stem cell compartment maintain adequate iron stores. However, during a period of iron deficiency, epithelial cells exhaust their iron reserves, whereas the stem cell compartments maintain their iron pools. During injury, when the stem compartment is disrupted, low iron levels impair proliferation and compromise repair mechanisms. CONCLUSIONS: Low dietary iron impairs intestinal repair through compromising the ability of epithelial cells to aid in intestinal proliferation.


Asunto(s)
Colitis Ulcerosa , Colitis , Enfermedad de Crohn , Humanos , Ratones , Animales , Enfermedad de Crohn/patología , Hierro de la Dieta/efectos adversos , Colitis/inducido químicamente , Cicatrización de Heridas , Modelos Animales de Enfermedad , Hierro/farmacología , Mucosa Intestinal , Sulfato de Dextran/farmacología , Ratones Endogámicos C57BL
7.
Gastroenterology ; 166(1): 103-116.e9, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37716376

RESUMEN

BACKGROUND & AIMS: CXADR-like membrane protein (CLMP) is structurally related to coxsackie and adenovirus receptor. Pathogenic variants in CLMP gene have been associated with congenital short bowel syndrome, implying a role for CLMP in intestinal development. However, the contribution of CLMP to regulating gut development and homeostasis is unknown. METHODS: In this study, we investigated CLMP function in the colonic epithelium using complementary in vivo and in vitro approaches, including mice with inducible intestinal epithelial cell (IEC)-specific deletion of CLMP (ClmpΔIEC), intestinal organoids, IECs with overexpression, or loss of CLMP and RNA sequencing data from individuals with colorectal cancer. RESULTS: Loss of CLMP enhanced IEC proliferation and, conversely, CLMP overexpression reduced proliferation. Xenograft experiments revealed increased tumor growth in mice implanted with CLMP-deficient colonic tumor cells, and poor engraftment was observed with CLMP-overexpressing cells. ClmpΔIEC mice showed exacerbated tumor burden in an azoxymethane and dextran sulfate sodium-induced colonic tumorigenesis model, and CLMP expression was reduced in human colorectal cancer samples. Mechanistic studies revealed that CLMP-dependent regulation of IEC proliferation is linked to signaling through mTOR-Akt-ß-catenin pathways. CONCLUSIONS: These results reveal novel insights into CLMP function in the colonic epithelium, highlighting an important role in regulating IEC proliferation, suggesting tumor suppressive function in colon cancer.


Asunto(s)
Colitis , Neoplasias del Colon , Animales , Humanos , Ratones , Proliferación Celular , Colitis/inducido químicamente , Colitis/metabolismo , Neoplasias del Colon/patología , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus , Células Epiteliales/patología , Mucosa Intestinal/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
8.
Nat Commun ; 14(1): 6214, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798277

RESUMEN

Claudin family tight junction proteins form charge- and size-selective paracellular channels that regulate epithelial barrier function. In the gastrointestinal tract, barrier heterogeneity is attributed to differential claudin expression. Here, we show that claudin-23 (CLDN23) is enriched in luminal intestinal epithelial cells where it strengthens the epithelial barrier. Complementary approaches reveal that CLDN23 regulates paracellular ion and macromolecule permeability by associating with CLDN3 and CLDN4 and regulating their distribution in tight junctions. Computational modeling suggests that CLDN23 forms heteromeric and heterotypic complexes with CLDN3 and CLDN4 that have unique pore architecture and overall net charge. These computational simulation analyses further suggest that pore properties are interaction-dependent, since differently organized complexes with the same claudin stoichiometry form pores with unique architecture. Our findings provide insight into tight junction organization and propose a model whereby different claudins combine to form multiple distinct complexes that modify epithelial barrier function by altering tight junction structure.


Asunto(s)
Claudinas , Uniones Estrechas , Uniones Estrechas/metabolismo , Claudinas/genética , Claudinas/química , Simulación por Computador , Células Epiteliales/metabolismo
9.
Proc Natl Acad Sci U S A ; 120(4): e2218162120, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36669099

RESUMEN

Resolution of inflammation and mucosal wound healing are crucial processes required to re-establish homeostasis following injury of mucosal tissues. Maresin-2 (MaR2), a lipid specialized pro-resolving mediator derived from omega-3 polyunsaturated fatty acid, has been reported to promote resolution of inflammation. However, a potential role for MaR2 in regulating mucosal repair remains undefined. Using lipidomic analyses, we demonstrate biosynthesis of MaR2 in healing intestinal mucosal wounds in vivo. Importantly, administration of exogenous MaR2 promoted mucosal repair following dextran sulfate sodium-induced colitis or biopsy-induced colonic mucosal injury. Functional analyses revealed that MaR2 promotes mucosal wound repair by driving intestinal epithelial migration through activation of focal cell-matrix adhesion signaling in primary human intestinal epithelial cells. Because of its labile nature, MaR2 is easily degradable and requires ultracold storage to maintain functionality. Thus, we created thermostable polylactic acid MaR2 nanoparticles that retain biological activity following extended storage at 4 °C or above. Taken together, these results establish MaR2 as a potent pro-repair lipid mediator with broad therapeutic potential for use in promoting mucosal repair in inflammatory diseases.


Asunto(s)
Colitis , Nanopartículas , Humanos , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Intestinos , Mucosa Intestinal/fisiología , Inflamación , Sulfato de Dextran/efectos adversos
10.
Inflamm Bowel Dis ; 29(7): 1133-1144, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-36688460

RESUMEN

BACKGROUND: Incidences of inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, are escalating worldwide and can be considered a global public health problem. Given that the gold standard approach to IBD therapeutics focuses on reducing the severity of symptoms, there is an urgent unmet need to develop alternative therapies that halt not only inflammatory processes but also promote mucosal repair. Previous studies have identified increased stem cell factor (SCF) expression in inflamed intestinal mucosal tissues. However, the role that SCF plays in mediating intestinal inflammation and repair has not been explored. METHODS: Changes in the expression of SCF were evaluated in the colonic tissue of healthy mice and during dextran sodium sulfate (DSS)-induced colitis. Furthermore, mucosal wound healing and colitis severity were analyzed in mice subjected to either mechanical biopsy or DSS treatment, respectively, following intestinal epithelial cell-specific deletion of SCF or anti-SCF antibody administration. RESULTS: We report robust expression of SCF by intestinal epithelial cells during intestinal homeostasis with a switch to immune cell-produced SCF during colitis. Data from mice with intestinal epithelial cell-specific deletion of SCF highlight the importance of immune cell-produced SCF in driving the pathogenesis of colitis. Importantly, antibody-mediated neutralization of total SCF or the specific SCF248 isoform decreased immune cell infiltration and enhanced mucosal wound repair following biopsy-induced colonic injury or DSS-induced colitis. CONCLUSIONS: These data demonstrate that SCF functions as a pro-inflammatory mediator in mucosal tissues and that specific neutralization of SCF248 could be a viable therapeutic option to reduce intestinal inflammation and promote mucosal wound repair in individuals with IBD.


Our investigation demonstrates that blocking cleavable SCF248 isoform by administration of specific stem cell factor antibodies enhances healing of the intestinal mucosa and restores critical barrier function, suggesting an alternative therapeutic option to treat individuals with active IBD.


Asunto(s)
Colitis Ulcerosa , Colitis , Enfermedades Inflamatorias del Intestino , Animales , Ratones , Colitis/tratamiento farmacológico , Colitis/patología , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , Sulfato de Dextran , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico , Inflamación/patología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/patología , Factor de Células Madre/antagonistas & inhibidores , Factor de Células Madre/metabolismo
11.
J Cell Biol ; 222(1)2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36516449

RESUMEN

Maintenance of epithelial barrier function requires dynamic repair and remodeling of tight junctions. In this issue, Higashi et al. (2022. J. Cell Biol.https://doi.org/10.1083/jcb.202204079) demonstrate that the proteolytic cleavage of EpCAM by membrane-anchored serine proteinases releases Claudin-7 to join tight junctions, suggesting a novel mechanism that couples sensing with repair of damaged tight junctions.


Asunto(s)
Claudinas , Molécula de Adhesión Celular Epitelial , Serina Proteasas , Uniones Estrechas , Claudinas/genética , Claudinas/metabolismo , Molécula de Adhesión Celular Epitelial/genética , Molécula de Adhesión Celular Epitelial/metabolismo , Células Epiteliales/metabolismo , Proteolisis , Uniones Estrechas/metabolismo , Serina Proteasas/metabolismo
12.
JCI Insight ; 7(17)2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35943805

RESUMEN

Junctional adhesion molecule-A (JAM-A) is expressed in several cell types, including epithelial and endothelial cells, as well as some leukocytes. In intestinal epithelial cells (IEC), JAM-A localizes to cell junctions and plays a role in regulating barrier function. In vitro studies with model cell lines have shown that JAM-A contributes to IEC migration; however, in vivo studies investigating the role of JAM-A in cell migration-dependent processes such as mucosal wound repair have not been performed. In this study, we developed an inducible intestinal epithelial-specific JAM-A-knockdown mouse model (Jam-aERΔIEC). While acute induction of IEC-specific loss of JAM-A did not result in spontaneous colitis, such mice had significantly impaired mucosal healing after chemically induced colitis and after biopsy colonic wounding. In vitro primary cultures of JAM-A-deficient IEC demonstrated impaired migration in wound healing assays. Mechanistic studies revealed that JAM-A stabilizes formation of protein signaling complexes containing Rap1A/Talin/ß1 integrin at focal adhesions of migrating IECs. Loss of JAM-A in primary IEC led to decreased Rap1A activity and protein levels of Talin and ß1 integrin, and it led to a reduction in focal adhesion structures. These findings suggest that epithelial JAM-A plays a critical role in controlling mucosal repair in vivo through dynamic regulation of focal adhesions.


Asunto(s)
Colitis , Molécula A de Adhesión de Unión , Animales , Colitis/inducido químicamente , Células Endoteliales/metabolismo , Integrina beta1/metabolismo , Ratones , Talina
13.
PNAS Nexus ; 1(5): pgac249, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36712325

RESUMEN

Clinical symptoms in many inflammatory diseases of the intestine are directly related to neutrophil (PMN) migration across colonic mucosa and into the intestinal lumen, yet in-vivo studies detailing this process are lacking. Using real-time intravital microscopy and a new distal colon loop model, we report distinct PMN migratory dynamics in response to several models of acute colonic injury. PMNs exhibited rapid swarming responses after mechanically induced intestinal wounds. Similar numbers of PMNs infiltrated colonic mucosa after wounding in germ-free mice, suggesting microbiota-independent mechanisms. By contrast, acute mucosal injury secondary to either a treatment of mice with dextran sodium sulfate or an IL-10 receptor blockade model of colitis resulted in lamina propria infiltration with PMNs that were largely immotile. Biopsy wounding of colonic mucosa in DSS-treated mice did not result in enhanced PMN swarming however, intraluminal application of the neutrophil chemoattractant LTB4 under such conditions resulted in enhanced transepithelial migration of PMNs. Analyses of PMNs that had migrated into the colonic lumen revealed that the majority of PMNs were directly recruited from the circulation and not from the immotile pool in the mucosa. Decreased PMN motility parallels upregulation of the receptor CXCR4 and apoptosis. Similarly, increased expression of CXCR4 on human PMNs was observed in colonic biopsies from people with active ulcerative colitis. This new approach adds an important tool to investigate mechanisms regulating PMN migration across mucosa within the distal intestine and will provide new insights for developing future anti-inflammatory and pro-repair therapies.

14.
J Vis Exp ; (168)2021 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-33616118

RESUMEN

The intestinal epithelium is comprised of a single layer of cells that act as a barrier between the gut lumen and the interior of the body. Disruption in the continuity of this barrier can result in inflammatory disorders such as inflammatory bowel disease. One of the limitations in the study of intestinal epithelial biology has been the lack of primary cell culture models, which has obliged researchers to use model cell lines derived from carcinomas. The advent of three dimensional (3D) enteroids has given epithelial biologists a powerful tool to generate primary cell cultures, nevertheless, these structures are embedded in extracellular matrix and lack the maturity characteristic of differentiated intestinal epithelial cells. Several techniques to generate intestinal epithelial monolayers have been published, but most are derived from established 3D enteroids making the process laborious and expensive. Here we describe a protocol to generate primary epithelial colon monolayers directly from murine intestinal crypts. We also detail experimental approaches that can be used with this model such as the generation of confluent cultures on permeable filters, confluent monolayer for scratch wound healing studies and sparse and confluent monolayers for immunofluorescence analysis.


Asunto(s)
Diferenciación Celular , Colon/citología , Células Epiteliales/citología , Mucosa Intestinal/citología , Cultivo Primario de Células/métodos , Animales , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Ratones , Ratones Endogámicos C57BL
15.
Mucosal Immunol ; 14(1): 135-143, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32576925

RESUMEN

Food-triggered anaphylaxis can encompass a variety of systemic and intestinal symptoms. Murine-based and clinical studies have revealed a role for histamine and H1R and H2R-pathway in the systemic response; however, the molecular processes that regulate the gastrointestinal (GI) response are not as well defined. In the present study, by utilizing an IgE-mast cell (MC)-dependent experimental model of oral antigen-induced anaphylaxis, we define the intestinal epithelial response during a food-induced anaphylactic reaction. We show that oral allergen-challenge stimulates a rapid dysregulation of intestinal epithelial transcellular and paracellular transport that was associated with the development of secretory diarrhea. Allergen-challenge induced (1) a rapid intestinal epithelial Cftr-dependent Cl- secretory response and (2) paracellular macromolecular leak that was associated with modification in epithelial intercellular junction proteins claudin-1, 2, 3 and 5, E-cadherin and desmosomal cadherins. OVA-induced Cftr-dependent Cl- secretion and junctional protein degradation was rapid occurring and was sustained for 72 h following allergen-challenge. Blockade of both the proteolytic activity and Cl- secretory response was required to alleviate intestinal symptoms of food-induced anaphylaxis. Collectively, these data suggest that the GI symptom of food-induced anaphylactic reaction, secretory diarrhea, is a consequence of CFTR-dependent Cl- secretion and proteolytic activity.


Asunto(s)
Anafilaxia/etiología , Anafilaxia/metabolismo , Cloruros/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Hipersensibilidad a los Alimentos/etiología , Hipersensibilidad a los Alimentos/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Alérgenos/inmunología , Anafilaxia/patología , Animales , Biomarcadores , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Hipersensibilidad a los Alimentos/patología , Inmunoglobulina E/inmunología , Transporte Iónico , Mastocitos/inmunología , Mastocitos/metabolismo , Ratones
16.
Am J Pathol ; 190(10): 2029-2038, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32958140

RESUMEN

N-formyl peptide receptors (FPRs) serve as phagocyte pattern-recognition receptors that play a crucial role in the regulation of host defense against infection. Epithelial cells also express FPRs, and their activation during inflammation or injury results in enhanced epithelial migration and proliferation and improved mucosal wound repair. However, signaling mechanisms that govern epithelial FPR1 activity are not well understood. This study identified a novel FPR1-interacting protein, WD40 repeat protein (WDR)-26, which negatively regulates FPR1-mediated wound healing in intestinal epithelial cells. We show that WDR26-mediated inhibition of wound repair is mediated through the inhibition of Rac family small GTPase 1 and cell division cycle 42 activation, as well as downstream intracellular reactive oxygen species production. Furthermore, on FPR1 activation with N-formyl-methionyl-leucyl phenylalanine, WDR26 dissociates from FPR1, resulting in the activation of downstream cell division cycle 42/Rac family small GTPase 1 signaling, increased epithelial cell migration, and mucosal wound repair. These findings elucidate a novel regulatory function of WDR26 in FPR1-mediated wound healing in intestinal epithelial cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células Epiteliales/metabolismo , Intestinos/patología , Cicatrización de Heridas/fisiología , Movimiento Celular/fisiología , Humanos , Mucosa Intestinal/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Formil Péptido/metabolismo
17.
JCI Insight ; 5(12)2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32427587

RESUMEN

Dysregulated healing of injured mucosa is a hallmark of many pathological conditions, including inflammatory bowel disease. Mucosal injury and chronic intestinal inflammation are also associated with alterations in epithelial glycosylation. Previous studies have revealed that inflammation-induced glycan sialyl Lewis A on epithelial CD44v6 acts as a ligand for transmigrating PMNs. Here we report that robust sialylated Lewis glycan expression was induced in colonic mucosa from individuals with ulcerative colitis and Crohn disease as well as in the colonic epithelium of mice with colitis induced by dextran sodium sulfate (DSS). Targeting of sialylated epithelial Lewis glycans with mAb GM35 reduced disease activity and improved mucosal integrity during DSS-induced colitis in mice. Wound healing studies revealed increased epithelial proliferation and migration responses as well as improved mucosal repair after ligation of epithelial sialyl Lewis glycans. Finally, we showed that GM35-mediated increases in epithelial proliferation and migration were mediated through activation of kinases that signal downstream of CD44v6 (Src, FAK, Akt). These findings suggest that sialylated Lewis glycans on CD44v6 represent epithelial targets for improved recovery of intestinal barrier function and restitution of mucosal homeostasis after inflammation or injury.


Asunto(s)
Colitis/metabolismo , Colon/patología , Células Epiteliales/metabolismo , Mucosa Intestinal/patología , Cicatrización de Heridas/fisiología , Animales , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colon/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/patología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismo , Ratones Endogámicos C57BL
18.
Proc Natl Acad Sci U S A ; 117(17): 9477-9482, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32300016

RESUMEN

Resolution of intestinal inflammation and wound repair are active processes that mediate epithelial healing at mucosal surfaces. Lipid molecules referred to as specialized proresolving mediators (SPMs) play an important role in the restorative response. Resolvin E1 (RvE1), a SPM derived from omega-3 fatty acids, has been reported to dampen intestinal inflammation by promoting anti-inflammatory responses including increased neutrophil spherocytosis and macrophage production of IL-10. Despite these observations, a role for RvE1 in regulating intestinal epithelial cell migration and proliferation during mucosal wound repair has not been explored. Using an endoscopic biopsy-based wound healing model, we report that RvE1 is locally produced in response to intestinal mucosal injury. Exposure of intestinal epithelial cells to RvE1 promoted wound repair by increasing cellular proliferation and migration through activation of signaling pathways including CREB, mTOR, and Src-FAK. Additionally, RvE1-triggered activation of the small GTPase Rac1 led to increased intracellular reactive oxygen species (ROS) production, cell-matrix adhesion, and cellular protrusions at the leading edge of migrating cells. Furthermore, in situ administration of RvE1-encapsulated synthetic targeted polymeric nanoparticles into intestinal wounds promoted mucosal repair. Together, these findings demonstrate that RvE1 functions as a prorepair lipid mediator by increasing intestinal epithelial cell migration and proliferation, and highlight potential therapeutic applications for this SPM to promote mucosal healing in the intestine.


Asunto(s)
Ácido Eicosapentaenoico/análogos & derivados , Mucosa Intestinal/metabolismo , Cicatrización de Heridas/fisiología , Animales , Adhesión Celular , Línea Celular , Colon , Ácido Eicosapentaenoico/metabolismo , Ácido Eicosapentaenoico/farmacología , Humanos , Mucosa Intestinal/patología , Ratones , Ratones Endogámicos C57BL , Nanopartículas , Neuropéptidos , Organoides , Especies Reactivas de Oxígeno , Proteína de Unión al GTP rac1
19.
Nat Commun ; 11(1): 513, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31980634

RESUMEN

Gut microbiota and their metabolites are instrumental in regulating intestinal homeostasis. However, early-life microbiota associated influences on intestinal development remain incompletely understood. Here we demonstrate that co-housing of germ-free (GF) mice with specific-pathogen free (SPF) mice at weaning (exGF) results in altered intestinal gene expression. Our results reveal that one highly differentially expressed gene, erythroid differentiation regulator-1 (Erdr1), is induced during development in SPF but not GF or exGF mice and localizes to Lgr5+ stem cells and transit amplifying (TA) cells. Erdr1 functions to induce Wnt signaling in epithelial cells, increase Lgr5+ stem cell expansion, and promote intestinal organoid growth. Additionally, Erdr1 accelerates scratch-wound closure in vitro, increases Lgr5+ intestinal stem cell regeneration following radiation-induced injury in vivo, and enhances recovery from dextran sodium sulfate (DSS)-induced colonic damage. Collectively, our findings indicate that early-life microbiota controls Erdr1-mediated intestinal epithelial proliferation and regeneration in response to mucosal damage.


Asunto(s)
Proteínas de la Membrana/metabolismo , Microbiota , Regeneración , Células Madre/citología , Proteínas Supresoras de Tumor/metabolismo , Animales , Proliferación Celular/genética , Colitis/inducido químicamente , Colitis/microbiología , Colitis/patología , Sulfato de Dextran , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Vida Libre de Gérmenes , Humanos , Luciferasas/metabolismo , Ratones Endogámicos C57BL , Microbiota/genética , Organoides/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células Madre/metabolismo , Vía de Señalización Wnt/genética , Cicatrización de Heridas/genética
20.
Clin Transl Gastroenterol ; 11(1): e00089, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31922993

RESUMEN

OBJECTIVES: Conventional colonoscopy with white light illumination detects colonic adenomas based on structural changes alone and is limited by a high miss rate. We aim to demonstrate an integrated imaging strategy that combines wide-field endoscopy and confocal endomicroscopy in real time to visualize molecular expression patterns in vivo to detect premalignant colonic mucosa. METHODS: A peptide specific for claudin-1 is labeled with Cy5.5 and administrated intravenously in genetically engineered mice that develop adenomas spontaneously in the distal colon. Wide-field endoscopy is used to identify the presence of nonpolypoid and polypoid adenomas. Anatomic landmarks are used to guide placement of a confocal endomicroscope with side-view optics to visualize claudin-1 expression patterns with subcellular resolution. RESULTS: Wide-field fluorescence images show peak uptake in colon adenoma at ∼1 hour after systemic peptide administration, and lesion margins are clearly defined. Further examination of the lesion using a confocal endomicroscope shows dysplastic crypts with large size, elongated shape, distorted architecture, and variable dimension compared with normal. The mean fluorescence intensity is significantly higher for dysplasia than normal. Increased claudin-1 expression in dysplasia vs normal is confirmed ex vivo, and the binding pattern is consistent with the in vivo imaging results. DISCUSSION: Wide-field endoscopy can visualize molecular expression of claudin-1 in vivo to localize premalignant colonic mucosa, and confocal endomicroscopy can identify subcellular feature to distinguish dysplasia from normal.


Asunto(s)
Adenoma/metabolismo , Claudina-1/metabolismo , Pólipos del Colon/metabolismo , Neoplasias Colorrectales/metabolismo , Adenoma/diagnóstico , Adenoma/genética , Adenoma/patología , Pólipos Adenomatosos/diagnóstico , Pólipos Adenomatosos/genética , Pólipos Adenomatosos/metabolismo , Pólipos Adenomatosos/patología , Animales , Animales Modificados Genéticamente , Carbocianinas , Claudina-1/genética , Pólipos del Colon/diagnóstico , Pólipos del Colon/genética , Pólipos del Colon/patología , Colonoscopía , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Técnica del Anticuerpo Fluorescente , Colorantes Fluorescentes , Genes APC , Inmunohistoquímica , Ratones , Microscopía Confocal , Péptidos , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA