Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(17): e2110557119, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35442775

RESUMEN

Anticancer drug development campaigns often fail due to an incomplete understanding of the therapeutic index differentiating the efficacy of the agent against the cancer and its on-target toxicities to the host. To address this issue, we established a versatile preclinical platform in which genetically defined cancers are produced using somatic tissue engineering in transgenic mice harboring a doxycycline-inducible short hairpin RNA against the target of interest. In this system, target inhibition is achieved by the addition of doxycycline, enabling simultaneous assessment of efficacy and toxicity in the same animal. As proof of concept, we focused on CDK9­a cancer target whose clinical development has been hampered by compounds with poorly understood target specificity and unacceptable toxicities. We systematically compared phenotypes produced by genetic Cdk9 inhibition to those achieved using a recently developed highly specific small molecule CDK9 inhibitor and found that both perturbations led to robust antitumor responses. Remarkably, nontoxic levels of CDK9 inhibition could achieve significant treatment efficacy, and dose-dependent toxicities produced by prolonged CDK9 suppression were largely reversible upon Cdk9 restoration or drug withdrawal. Overall, these results establish a versatile in vivo target validation platform that can be employed for rapid triaging of therapeutic targets and lend support to efforts aimed at advancing CDK9 inhibitors for cancer therapy.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Quinasa 9 Dependiente de la Ciclina/metabolismo , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Interferencia de ARN
2.
Mol Cancer Res ; 20(8): 1305-1319, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35394541

RESUMEN

KRAS mutation in colorectal cancer is associated with aggressive tumor behavior through increased invasiveness and higher rates of lung metastases, but the biological mechanisms behind these features are not fully understood. In this study, we show that KRAS-mutant colorectal cancer upregulates integrin α6ß4 through ERK/MEK signaling. Knocking-out integrin ß4 (ITGB4) specifically depleted the expression of integrin α6ß4 and this resulted in a reduction in the invasion and migration ability of the cancer cells. We also observed a reduction in the number and area of lung metastatic foci in mice that were injected with ITGB4 knockout KRAS-mutant colorectal cancer cells compared with the mice injected with ITGB4 wild-type KRAS-mutant colorectal cancer cells, while no difference was observed in liver metastases. Inhibiting integrin α6ß4 in KRAS-mutant colorectal cancer could be a potential therapeutic target to diminish the KRAS-invasive phenotype and associated pulmonary metastasis rate. IMPLICATIONS: Knocking-out ITGB4, which is overexpressed in KRAS-mutant colorectal cancer and promotes tumor aggressiveness, diminishes local invasiveness and rates of pulmonary metastasis.


Asunto(s)
Neoplasias Colorrectales , Integrina beta4 , Neoplasias Pulmonares , Animales , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Integrina alfa6beta4/genética , Integrina alfa6beta4/metabolismo , Integrina beta4/genética , Integrina beta4/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Ratones , Invasividad Neoplásica/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
3.
Mol Oncol ; 15(10): 2766-2781, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33817986

RESUMEN

Somatic mutations in the KRAS oncogene are associated with poor outcomes in locally advanced rectal cancer but the underlying biologic mechanisms are not fully understood. We profiled mRNA in 76 locally advanced rectal adenocarcinomas from patients that were enrolled in a prospective clinical trial and investigated differences in gene expression between KRAS mutant (KRAS-mt) and KRAS-wild-type (KRAS-wt) patients. We found that KRAS-mt tumors display lower expression of genes related to the tumor stroma and remodeling of the extracellular matrix. We validated our findings using samples from The Cancer Genome Atlas (TCGA) and also by performing immunohistochemistry (IHC) and immunofluorescence (IF) in orthogonal cohorts. Using in vitro and in vivo models, we show that oncogenic KRAS signaling within the epithelial cancer cells modulates the activity of the surrounding fibroblasts in the tumor microenvironment.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras) , Neoplasias del Recto , Ensayos Clínicos como Asunto , Matriz Extracelular , Fibroblastos/patología , Humanos , Mutación/genética , Estudios Prospectivos , Proteínas Proto-Oncogénicas p21(ras)/genética , Neoplasias del Recto/genética , Neoplasias del Recto/patología , Microambiente Tumoral
4.
Nat Cancer ; 1(1): 28-45, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-32656539

RESUMEN

Metastasis-initiating cells with stem-like properties drive cancer lethality, yet their origins and relationship to primary-tumor-initiating stem cells are not known. We show that L1CAM+ cells in human colorectal cancer (CRC) have metastasis-initiating capacity, and we define their relationship to tissue regeneration. L1CAM is not expressed in the homeostatic intestinal epithelium, but is induced and required for epithelial regeneration following colitis and in CRC organoid growth. By using human tissues and mouse models, we show that L1CAM is dispensable for adenoma initiation but required for orthotopic carcinoma propagation, liver metastatic colonization and chemoresistance. L1CAMhigh cells partially overlap with LGR5high stem-like cells in human CRC organoids. Disruption of intercellular epithelial contacts causes E-cadherin-REST transcriptional derepression of L1CAM, switching chemoresistant CRC progenitors from an L1CAMlow to an L1CAMhigh state. Thus, L1CAM dependency emerges in regenerative intestinal cells when epithelial integrity is lost, a phenotype of wound healing deployed in metastasis-initiating cells.


Asunto(s)
Neoplasias Colorrectales , Molécula L1 de Adhesión de Célula Nerviosa , Animales , Neoplasias Colorrectales/patología , Humanos , Ratones , Metástasis de la Neoplasia , Molécula L1 de Adhesión de Célula Nerviosa/genética
6.
Nat Med ; 25(10): 1607-1614, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31591597

RESUMEN

Rectal cancer (RC) is a challenging disease to treat that requires chemotherapy, radiation and surgery to optimize outcomes for individual patients. No accurate model of RC exists to answer fundamental research questions relevant to patients. We established a biorepository of 65 patient-derived RC organoid cultures (tumoroids) from patients with primary, metastatic or recurrent disease. RC tumoroids retained molecular features of the tumors from which they were derived, and their ex vivo responses to clinically relevant chemotherapy and radiation treatment correlated with the clinical responses noted in individual patients' tumors. Upon engraftment into murine rectal mucosa, human RC tumoroids gave rise to invasive RC followed by metastasis to lung and liver. Importantly, engrafted tumors displayed the heterogenous sensitivity to chemotherapy observed clinically. Thus, the biology and drug sensitivity of RC clinical isolates can be efficiently interrogated using an organoid-based, ex vivo platform coupled with in vivo endoluminal propagation in animals.


Asunto(s)
Quimioradioterapia , Organoides/patología , Neoplasias del Recto/tratamiento farmacológico , Neoplasias del Recto/radioterapia , Animales , Fluorouracilo/farmacología , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/secundario , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/secundario , Ratones , Metástasis de la Neoplasia , Organoides/efectos de los fármacos , Organoides/efectos de la radiación , Neoplasias del Recto/patología
7.
Mol Biol Cell ; 29(13): 1682-1692, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29791254

RESUMEN

Tetraploid cells, which are most commonly generated by errors in cell division, are genomically unstable and have been shown to promote tumorigenesis. Recent genomic studies have estimated that ∼40% of all solid tumors have undergone a genome-doubling event during their evolution, suggesting a significant role for tetraploidy in driving the development of human cancers. To safeguard against the deleterious effects of tetraploidy, nontransformed cells that fail mitosis and become tetraploid activate both the Hippo and p53 tumor suppressor pathways to restrain further proliferation. Tetraploid cells must therefore overcome these antiproliferative barriers to ultimately drive tumor development. However, the genetic routes through which spontaneously arising tetraploid cells adapt to regain proliferative capacity remain poorly characterized. Here, we conducted a comprehensive gain-of-function genome-wide screen to identify microRNAs (miRNAs) that are sufficient to promote the proliferation of tetraploid cells. Our screen identified 23 miRNAs whose overexpression significantly promotes tetraploid proliferation. The vast majority of these miRNAs facilitate tetraploid growth by enhancing mitogenic signaling pathways (e.g., miR-191-3p); however, we also identified several miRNAs that impair the p53/p21 pathway (e.g., miR-523-3p), and a single miRNA (miR-24-3p) that potently inactivates the Hippo pathway via down-regulation of the tumor suppressor gene NF2. Collectively, our data reveal several avenues through which tetraploid cells may regain the proliferative capacity necessary to drive tumorigenesis.


Asunto(s)
Pruebas Genéticas , MicroARNs/genética , Tetraploidía , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proliferación Celular/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación hacia Abajo/genética , Humanos , MicroARNs/metabolismo , Mitógenos/metabolismo , Neurofibromina 2/metabolismo , Fosfoproteínas/metabolismo , Transducción de Señal , Factores de Transcripción , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Señalizadoras YAP
8.
Lancet Child Adolesc Health ; 2(5): 321-337, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29732397

RESUMEN

BACKGROUND: The mortality burden in children aged 5-14 years in the WHO European Region has not been comprehensively studied. We assessed the distribution and trends of the main causes of death among children aged 5-9 years and 10-14 years from 1990 to 2016, for 51 countries in the WHO European Region. METHODS: We used data from vital registration systems, cancer registries, and police records from 1980 to 2016 to estimate cause-specific mortality using the Cause of Death Ensemble model. FINDINGS: For children aged 5-9 years, all-cause mortality rates (per 100 000 population) were estimated to be 46·3 (95% uncertainty interval [UI] 45·1-47·5) in 1990 and 19·5 (18·1-20·9) in 2016, reflecting a 58·0% (54·7-61·1) decline. For children aged 10-14 years, all-cause mortality rates (per 100 000 population) were 37·9 (37·3-38·6) in 1990 and 20·1 (18·8-21·3) in 2016, reflecting a 47·1% (43·8-50·4) decline. In 2016, we estimated 10 740 deaths (95% UI 9970-11 542) in children aged 5-9 years and 10 279 deaths (9652-10 897) in those aged 10-14 years in the WHO European Region. Injuries (road injuries, drowning, and other injuries) caused 4163 deaths (3820-4540; 38·7% of total deaths) in children aged 5-9 years and 4468 deaths (4162-4812; 43·5% of total) in those aged 10-14 years in 2016. Neoplasms caused 2161 deaths (1872-2406; 20·1% of total deaths) in children aged 5-9 years and 1943 deaths (1749-2101; 18·9% of total deaths) in those aged 10-14 years in 2016. Notable differences existed in cause-specific mortality rates between the European subregions, from a two-times difference for leukaemia to a 20-times difference for lower respiratory infections between the Commonwealth of Independent States (CIS) and EU15 (the 15 member states that had joined the European Union before May, 2004). INTERPRETATION: Marked progress has been made in reducing the mortality burden in children aged 5-14 years over the past 26 years in the WHO European Region. More deaths could be prevented, especially in CIS countries, through intervention and prevention efforts focusing on the leading causes of death, which are road injuries, drowning, and lower respiratory infections. The findings of our study could be used as a baseline to assess the effect of implementation of programmes and policies on child mortality burden. FUNDING: WHO and Bill & Melinda Gates Foundation.

9.
Nat Biotechnol ; 35(6): 577-582, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28459450

RESUMEN

Colorectal cancer (CRC) is a leading cause of death in the developed world, yet facile preclinical models that mimic the natural stages of CRC progression are lacking. Through the orthotopic engraftment of colon organoids we describe a broadly usable immunocompetent CRC model that recapitulates the entire adenoma-adenocarcinoma-metastasis axis in vivo. The engraftment procedure takes less than 5 minutes, shows efficient tumor engraftment in two-thirds of mice, and can be achieved using organoids derived from genetically engineered mouse models (GEMMs), wild-type organoids engineered ex vivo, or from patient-derived human CRC organoids. In this model, we describe the genotype and time-dependent progression of CRCs from adenocarcinoma (6 weeks), to local disseminated disease (11-12 weeks), and spontaneous metastasis (>20 weeks). Further, we use the system to show that loss of dysregulated Wnt signaling is critical for the progression of disseminated CRCs. Thus, our approach provides a fast and flexible means to produce tailored CRC mouse models for genetic studies and pre-clinical investigation.


Asunto(s)
Neoplasias Colorrectales/genética , Modelos Animales de Enfermedad , Edición Génica/métodos , Genes Relacionados con las Neoplasias/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundario , Trasplante de Órganos/métodos , Animales , Carcinogénesis/genética , Línea Celular Tumoral , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Femenino , Masculino , Ratones , Ratones Transgénicos , Metástasis de la Neoplasia
10.
Mol Cancer Res ; 15(6): 708-713, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28184012

RESUMEN

Here, comprehensive analysis was performed on the molecular and clinical features of colorectal carcinoma harboring chromosome 20q amplification. Tumor and normal DNA from patients with advanced colorectal carcinoma underwent next-generation sequencing via MSK-IMPACT, and a subset of case samples was subjected to high-resolution microarray (Oncoscan). Relationships between genomic copy number and transcript expression were assessed with The Cancer Genome Atlas (TCGA) colorectal carcinoma data. Of the colorectal carcinoma patients sequenced (n = 401) with MSK-IMPACT, 148 (37%) had 20q gain, and 30 (7%) had 20q amplification. In both the MSK-IMPACT and TCGA datasets, BCL2L1 was the most frequently amplified 20q oncogene. However, SRC was the only recognized 20q oncogene with a significant inverse relationship between mRNA upregulation and RAS/RAF mutation (OR, -0.4 ± 0.2, P = 0.02). In comparison with 20q diploid colorectal carcinoma, 20q gain/amplification was associated with wild-type KRAS (P < 0.001) and BRAF (P = 0.01), microsatellite stability (P < 0.001), distal primary tumors (P < 0.001), and mutant TP53 (P < 0.001), but not stage. On multivariate analysis, longer overall survival from the date of metastasis was observed with chromosome 20q gain (P = 0.02) or amplification (P = 0.04) compared with diploid 20q.Implications: 20q amplification defines a subset of colorectal cancer patients with better overall survival from the date of metastasis, and further studies are warranted to assess whether the inhibition of 20q oncogenes, such as SRC, may benefit this subset of patients. Mol Cancer Res; 15(6); 708-13. ©2017 AACR.


Asunto(s)
Cromosomas Humanos Par 20/genética , Neoplasias del Colon/genética , Neoplasias del Colon/mortalidad , Inestabilidad de Microsatélites , Anticuerpos Monoclonales/uso terapéutico , Cetuximab/uso terapéutico , Neoplasias del Colon/tratamiento farmacológico , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/mortalidad , Receptores ErbB/antagonistas & inhibidores , Humanos , Mutación , Panitumumab , Modelos de Riesgos Proporcionales , Análisis de Supervivencia , Quinasas raf/genética , Proteínas ras/genética
11.
Nature ; 528(7583): 560-564, 2015 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-26649819

RESUMEN

Epithelial regeneration is critical for barrier maintenance and organ function after intestinal injury. The intestinal stem cell (ISC) niche provides Wnt, Notch and epidermal growth factor (EGF) signals supporting Lgr5(+) crypt base columnar ISCs for normal epithelial maintenance. However, little is known about the regulation of the ISC compartment after tissue damage. Using ex vivo organoid cultures, here we show that innate lymphoid cells (ILCs), potent producers of interleukin-22 (IL-22) after intestinal injury, increase the growth of mouse small intestine organoids in an IL-22-dependent fashion. Recombinant IL-22 directly targeted ISCs, augmenting the growth of both mouse and human intestinal organoids, increasing proliferation and promoting ISC expansion. IL-22 induced STAT3 phosphorylation in Lgr5(+) ISCs, and STAT3 was crucial for both organoid formation and IL-22-mediated regeneration. Treatment with IL-22 in vivo after mouse allogeneic bone marrow transplantation enhanced the recovery of ISCs, increased epithelial regeneration and reduced intestinal pathology and mortality from graft-versus-host disease. ATOH1-deficient organoid culture demonstrated that IL-22 induced epithelial regeneration independently of the Paneth cell niche. Our findings reveal a fundamental mechanism by which the immune system is able to support the intestinal epithelium, activating ISCs to promote regeneration.


Asunto(s)
Células Epiteliales/citología , Interleucinas/inmunología , Mucosa Intestinal/citología , Intestino Delgado/citología , Regeneración , Células Madre/citología , Células Madre/metabolismo , Animales , Células Epiteliales/inmunología , Células Epiteliales/patología , Femenino , Enfermedad Injerto contra Huésped/patología , Humanos , Inmunidad Mucosa , Interleucinas/deficiencia , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Intestino Delgado/inmunología , Intestino Delgado/patología , Ratones , Organoides/citología , Organoides/crecimiento & desarrollo , Organoides/inmunología , Células de Paneth/citología , Fosforilación , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Nicho de Células Madre , Interleucina-22
12.
Cell ; 161(7): 1539-1552, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26091037

RESUMEN

The adenomatous polyposis coli (APC) tumor suppressor is mutated in the vast majority of human colorectal cancers (CRC) and leads to deregulated Wnt signaling. To determine whether Apc disruption is required for tumor maintenance, we developed a mouse model of CRC whereby Apc can be conditionally suppressed using a doxycycline-regulated shRNA. Apc suppression produces adenomas in both the small intestine and colon that, in the presence of Kras and p53 mutations, can progress to invasive carcinoma. In established tumors, Apc restoration drives rapid and widespread tumor-cell differentiation and sustained regression without relapse. Tumor regression is accompanied by the re-establishment of normal crypt-villus homeostasis, such that once aberrantly proliferating cells reacquire self-renewal and multi-lineage differentiation capability. Our study reveals that CRC cells can revert to functioning normal cells given appropriate signals and provide compelling in vivo validation of the Wnt pathway as a therapeutic target for treatment of CRC.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Neoplasias Colorrectales/genética , Modelos Animales de Enfermedad , Intestino Grueso/patología , Intestino Delgado/patología , Proteína de la Poliposis Adenomatosa del Colon/genética , Animales , Proliferación Celular , Neoplasias Colorrectales/patología , Doxiciclina/administración & dosificación , Genes p53 , Pólipos Intestinales/metabolismo , Pólipos Intestinales/patología , Intestino Grueso/metabolismo , Intestino Delgado/metabolismo , Ratones , Ratones Transgénicos , Proteínas Proto-Oncogénicas p21(ras)/genética , Interferencia de ARN , Vía de Señalización Wnt
13.
Cell ; 158(4): 833-848, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-25126788

RESUMEN

Genetically unstable tetraploid cells can promote tumorigenesis. Recent estimates suggest that ∼37% of human tumors have undergone a genome-doubling event during their development. This potentially oncogenic effect of tetraploidy is countered by a p53-dependent barrier to proliferation. However, the cellular defects and corresponding signaling pathways that trigger growth suppression in tetraploid cells are not known. Here, we combine RNAi screening and in vitro evolution approaches to demonstrate that cytokinesis failure activates the Hippo tumor suppressor pathway in cultured cells, as well as in naturally occurring tetraploid cells in vivo. Induction of the Hippo pathway is triggered in part by extra centrosomes, which alter small G protein signaling and activate LATS2 kinase. LATS2 in turn stabilizes p53 and inhibits the transcriptional regulators YAP and TAZ. These findings define an important tumor suppression mechanism and uncover adaptive mechanisms potentially available to nascent tumor cells that bypass this inhibitory regulation.


Asunto(s)
Citocinesis , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Línea Celular Tumoral , Centrosoma/metabolismo , Células Epiteliales/metabolismo , Hepatocitos/metabolismo , Vía de Señalización Hippo , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Tetraploidía , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA