Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38587063

RESUMEN

Bioactive peptides (BP) are recognized for their ability to function as antioxidants and maintain lipid stability. They may have positive health effects, including antihypertensive, anti-inflammatory, antimicrobial, osteoprotective, gut health, and immunomodulatory properties, but are poorly tested in cats. Our primary objective was to determine the apparent total tract digestibility (ATTD) of BP-containing kibble diets and assess how the fecal characteristics, metabolites, and microbiota were affected in adult cats. Our secondary objective was to test whether BP could impact blood oxidative stress markers and cytokine concentrations following transport stress. Twelve adult cats (4.83 ± 0.37 yr; 4.76 ± 0.14 kg) were used in a replicated 4 × 4 Latin square design to test four extruded kibble diets: Control (no BP), Chicken (4% chicken BP), Marine1 (2% marine BP), and Marine2 (4% marine BP). Each experimental period lasted 28 d, with a 20-d adaptation phase, 5 d for fecal collection, 2 d for blood collection, and 1 d for transport stress testing (driven in vehicle in individual carriers for 45 min). Salivary cortisol and blood oxidative stress markers and cytokines were measured after transport. Fecal microbiota data were evaluated using 16S rRNA gene amplicon sequencing and QIIME2. All other data were analyzed using the Mixed Models procedure of SAS, with P < 0.05 being considered significant and P < 0.10 considered trends. No differences were observed in animal health outcomes, with all cats remaining healthy and serum metabolites remaining within reference ranges. Cats fed the Marine2 diet had higher (P < 0.05) ATTD of dry matter (84.5% vs. 80.9%) and organic matter (88.3% vs. 85.8%) than those fed the control diet. The ATTD of protein and energy tended to be higher (P < 0.10) for cats fed the Marine2 diet. Fecal characteristics, metabolites, and bacterial alpha and beta diversity measures were not affected by treatment. However, the relative abundances of six bacterial genera were different (P < 0.05) and two bacterial genera tended to be different (P < 0.10) across treatments. Treatment did not alter salivary cortisol, blood oxidative stress markers, or blood cytokines after transport stress. Our data suggest that BP inclusion may increase nutrient digestibility and modify fecal microbiota and immune measures. More testing is required, however, to determine whether BP may provide additional benefits to cats.


Dietary bioactive peptides (BP) may have positive health effects, but are poorly tested in cats. Our primary objective was to determine the apparent total tract digestibility of BP-containing kibble diets and assess how fecal characteristics, metabolites, and microbiota were affected in adult cats. Our secondary objective was to test whether BP could impact blood oxidative stress markers and cytokines following transport stress. Adult cats were used in a replicated 4 × 4 Latin square design to test four extruded kibble diets containing different BP concentrations. After diet adaptation, fecal and blood samples were collected and transport stress testing was done in each experimental period. All cats remained healthy and serum metabolites remained within reference ranges. Cats fed one of the BP diets had higher dry matter and organic matter digestibilities and tended to have higher protein and energy digestibilities. Fecal characteristics, metabolites, and microbiota diversity measures were not different, but the relative abundances of eight bacterial genera differed or tended to differ across treatments. Treatments did not alter oxidative stress markers after transport stress. Our data suggest that BP inclusion may increase nutrient digestibility and modify fecal microbiota. Further testing is required to determine whether BP provides additional benefits to cats.


Asunto(s)
Alimentación Animal , Dieta , Suplementos Dietéticos , Digestión , Heces , Microbioma Gastrointestinal , Animales , Gatos , Heces/química , Heces/microbiología , Dieta/veterinaria , Alimentación Animal/análisis , Digestión/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Péptidos , Masculino , Femenino , Fenómenos Fisiológicos Nutricionales de los Animales , Estrés Oxidativo/efectos de los fármacos
2.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37772600

RESUMEN

The incidence of feline obesity continues to rise despite it being a preventable disease. There are many risks and health perturbations associated with obesity, with several of those impacting a pet's quality of life, wellness, and longevity. Feline obesity is commonly studied, but most research has been focused on weight loss rather than weight gain. To our knowledge, feline studies have not examined the implications of overfeeding and weight gain on gastrointestinal transit time (GTT) nor the association it has with the fecal microbiota. Therefore, the objective of this study was to determine the effects of overfeeding and weight gain on apparent total tract digestibility (ATTD), GTT, blood hormones, serum metabolites, hematology, fecal microbiota populations, and voluntary physical activity of cats. Eleven lean adult spayed female cats [body weight (BW) = 4.11 ±â€…0.43 kg; body condition score = 5.41 ±â€…0.3; age = 5.22 ±â€…0.03 y] were used in a longitudinal weight gain study. After a 2-wk baseline phase, cats were allowed to overeat for 18 wk. A commercially available complete and balanced diet was fed during the baseline phase to identify the intake needed to maintain BW. Cats were then fed the same diet ad libitum to induce weight gain. Fecal samples, blood samples, and voluntary physical activity data were collected at baseline (week 0) and 6, 12, and 18 wk after weight gain. Fecal samples were collected for microbiota analysis, determination of ATTD, and GTT measurement while blood samples were collected for serum chemistry, hematology, and insulin and leptin measurements. Microbiota data were evaluated using QIIME2. All other measures were evaluated statistically using the mixed models procedure of SAS using repeated measures analysis, with time effects being the focus. A P < 0.05 was considered significant. The ATTD of dry matter (P = 0.0061), organic matter (P = 0.0130), crude protein (P < 0.0001), fat (P = 0.0002), and gross energy (P = 0.0002), and GTT (P = 0.0418) decreased with overfeeding and weight gain. Fecal bacterial alpha diversity measures were unchanged, but fecal bacterial beta diversity was impacted (P < 0.05) with overfeeding and weight gain. The relative abundances of 16 bacterial genera, including Bifidobacterium, Collinsella, Erysipelatoclostridium were affected (P < 0.05) by overfeeding and weight gain. In conclusion, overfeeding and subsequent weight gain reduced ATTD, reduced GTT, and caused changes to the fecal microbial community of adult cats.


Feline obesity continues to rise, impacting the wellness, quality of life, and longevity of cats. Understanding the metabolic and gastrointestinal changes that companion animals face with the onset of weight gain and obesity may help with future prevention and treatment plans. The implications of overfeeding and weight gain on gastrointestinal transit time (GTT) and its association with fecal microbiota populations have not been studied. Therefore, the objective of this study was to determine the effects of overfeeding and weight gain on apparent total tract digestibility, GTT, blood hormones, serum metabolites, hematology, fecal microbiota populations, and voluntary physical activity of cats. After a 2-week baseline phase, adult cats were allowed to overeat for 18 weeks. Fecal and blood samples were collected, and voluntary physical activity was measured using accelerometers over time. Dry matter, organic matter, protein, fat, and energy digestibilities and GTT were decreased with overfeeding and weight gain. Fecal bacterial beta diversity was impacted by overfeeding and weight gain, impacting the relative abundances of 1 bacterial phylum and 16 bacterial genera. In conclusion, overfeeding and subsequent weight gain reduced nutrient digestibility, reduced GTT and caused changes to the fecal microbial community of adult cats.

3.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37773637

RESUMEN

Feline obesity is a common and preventable disease, posing a myriad of health risks and detriments. Specially formulated diets and restricted feeding may serve as an intervention strategy to promote weight loss and improve feline health. In this study, our objective was to determine the effects of restricted feeding and weight loss on body composition, voluntary physical activity, blood hormones and metabolites, and fecal microbiota of overweight cats. Twenty-two overweight adult spayed female and neutered male cats [body weight (BW) = 5.70 ± 1.0 kg; body condition score (BCS) = 7.68 ± 0.6; age = 4 ± 0.4 yr] were used in a weight loss study. A control diet (OR) was fed during a 4-wk baseline to identify intake needed to maintain BW. After baseline (week 0), cats were allotted to OR or a test diet (FT) and fed to lose ~1.0% BW/wk for 24 wk. At baseline and 6, 12, 18, and 24 wk after weight loss, dual-energy x-ray absorptiometry scans were performed and blood samples were collected. Voluntary physical activity was measured at weeks 0, 8, 16, and 24. Fecal samples were collected at weeks 0, 4, 8, 12, 16, 20, and 24. Change from baseline data were analyzed statistically using the Mixed Models procedure of SAS, with P < 0.05 considered significant. Restricted feeding of both diets led to weight and fat mass loss, lower BCS, and lower blood triglyceride and leptin concentrations. Cats fed the FT diet had a greater reduction in blood triglycerides and cholesterol than cats fed the OR diet. Restricted feeding and weight loss reduced fecal short-chain fatty acid, branched-chain fatty acid, phenol, and indole concentrations. Fecal valerate concentrations were affected by diet, with cats fed the OR diet having a greater reduction than those fed the FT diet. Fecal bacterial alpha diversity was not affected, but fecal bacterial beta diversity analysis showed clustering by diet. Restricted feeding and weight loss affected relative abundances of 7 fecal bacterial genera, while dietary intervention affected change from baseline relative abundances of 2 fecal bacterial phyla and 20 fecal bacterial genera. Our data demonstrate that restricted feeding promoted controlled and safe weight and fat loss, reduced blood lipids and leptin concentrations, and shifted fecal metabolites and microbiota. Some changes were also impacted by diet, highlighting the importance of ingredient and nutrient composition in weight loss diets.


The objective of this study was to determine the effects of diet, restricted feeding and weight loss on body composition, voluntary physical activity, blood hormones and metabolites, and fecal metabolites and microbiota of overweight cats. Overweight cats were allotted to a control diet (OR) or weight loss diet (FT) and fed to lose ~1.0% body weight/week for 24 wk. Body weight, body composition, and voluntary physical activity were measured, while fecal and blood samples were collected over time. Restricted feeding led to weight and fat mass loss, and lower blood triglyceride and leptin concentrations. Cats fed FT had a greater reduction in blood triglycerides and cholesterol than cats fed OR. Restricted feeding reduced fecal metabolite concentrations and affected relative abundances of 7 fecal bacterial genera. Fecal bacterial beta diversity analysis showed clustering by diet. Dietary intervention affected change from baseline relative abundances of 2 fecal bacterial phyla and 20 fecal bacterial genera. Our data demonstrate that restricted feeding promoted controlled and safe weight and fat loss, reduced blood lipids and leptin concentrations, and shifted fecal metabolites and microbiota. Some dietary differences were noted, highlighting the importance of ingredient and nutrient composition in weight loss diets.


Asunto(s)
Enfermedades de los Gatos , Microbiota , Gatos , Animales , Masculino , Femenino , Leptina , Sobrepeso/veterinaria , Dieta/veterinaria , Heces/microbiología , Pérdida de Peso , Composición Corporal , Bacterias , Alimentación Animal , Peso Corporal
4.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36879442

RESUMEN

Canine obesity negatively influences health and well-being, but can be managed by altering diet composition and caloric intake. Restricted feeding, dietary intervention, and consequent weight loss may be used to improve health and modify gastrointestinal microbiota. In this study, we aimed to determine the effects of restricted feeding of specially formulated foods on weight loss, body composition, voluntary physical activity, serum hormones and oxidative stress markers, and fecal metabolites and microbiota populations of obese dogs. Twenty-four obese dogs [body weight (BW) = 15.2 ±â€…1.7 kg; body condition score (BCS) = 8.7 ±â€…0.4; muscle condition score (MCS) = 3.5 ±â€…0.3; age = 7.2 ±â€…1.6 yr] were used in a 24-wk study. A control (OR) food was fed during a 4-wk baseline to identify intake needed to maintain BW. After baseline, dogs were allotted to one of two diets: OR or test (FT), and then fed to lose 1.5% BW/wk. Food intake, BW, BCS, and MCS were measured, blood and fecal samples were collected, DEXA scans were performed, and voluntary physical activity was measured over time. Microbiota data were evaluated using QIIME2 and change from baseline data from other measures were evaluated using the Mixed Models procedure of SAS, with P < 0.05 being significant. Restricted feeding led to reduced BW, BCS, fat mass, and blood cholesterol, triglyceride, glucose, and leptin concentrations, and increased MCS and lean body mass percentage. Blood cholesterol reduction was greater in dogs fed FT vs. OR. Fecal metabolites and bacterial alpha-diversity were affected by diet and weight loss. Dogs fed FT had greater reductions in fecal short-chain fatty acid, branched-chain fatty acid, and ammonia concentrations than those fed OR. Dogs fed OR had a higher alpha-diversity than those fed FT. Weight loss increased alpha-diversity (weeks 16, 20, and 24 > weeks 0 and 4). Beta-diversity showed separation between dietary groups and between week 0 and all other time points after week 8. Weight loss increased fecal Allobaculum and Ruminococcus torques. Weight loss also increased fecal Bifidobacterium, Faecalibaculum, and Parasutterella, but were greater in dogs fed OR. Weight loss decreased fecal Collinsella, Turicibacter, Blautia, Ruminococcus gnavus, Faecalibacterium, and Peptoclostridium, but were greater in dogs fed OR. In summary, restricted feeding promoted safe weight and fat loss, reduced blood lipid and leptin concentrations, and altered fecal microbiota of obese dogs.


In this study, we aimed to determine the effects of restricted feeding of specially formulated foods on weight loss, body composition, voluntary physical activity, serum hormones and oxidative stress markers, and fecal metabolites and microbiota populations of obese dogs. A control (OR) food was fed during a 4-wk baseline to identify intake needed to maintain the body weight (BW). After baseline, dogs were allotted to one of two diets: OR or test (FT) and then fed to lose 1.5% BW per week for 24 wk. Restricted feeding and weight loss led to reduced BW, body condition score, fat mass, and blood cholesterol, triglyceride, glucose and leptin concentrations and increased muscle condition score and lean body mass percentage. The reduction in blood cholesterol was greater in dogs fed FT vs. OR. Fecal metabolites and bacterial alpha-diversity were affected by diet and weight loss, with dogs fed with OR having a higher alpha-diversity than those fed with FT. Restricted feeding and weight loss increased alpha-diversity, affected beta-diversity, and impacted the relative abundances of nearly 20 bacterial genera. In summary, restricted feeding with high-protein, low-starch kibble diets promoted safe weight and fat loss, reduced blood lipid and leptin concentrations, and altered fecal microbiota of obese dogs.


Asunto(s)
Enfermedades de los Perros , Microbiota , Condicionamiento Físico Animal , Perros , Animales , Leptina/metabolismo , Dieta/veterinaria , Obesidad/veterinaria , Obesidad/metabolismo , Pérdida de Peso , Heces/microbiología , Composición Corporal , Colesterol , Alimentación Animal
5.
J Anim Sci ; 100(10)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35965387

RESUMEN

Purported benefits of human-grade pet foods include reduced inflammation, enhanced coat quality, and improved gut health, but research is scarce. Therefore, we compared gene expression, skin and coat health measures, and the fecal microbiome of dogs consuming a mildly cooked human-grade or extruded kibble diet. Twenty beagles (BW = 10.25 ± 0.82 kg; age = 3.85 ± 1.84 yr) were used in a completely randomized design. Test diets included: 1) chicken and brown rice recipe [feed-grade; extruded; blue buffalo (BB)]; and 2) chicken and white rice [human-grade; mildly cooked; Just Food for Dogs (JFFD)]. The study consisted of a 4-week baseline when all dogs ate BB, and a 12-week treatment phase when dogs were randomized to either diet (n = 10/group). After the baseline and treatment phases, fresh fecal samples were scored and collected for pH, dry matter (DM), and microbiome analysis; blood samples were collected for gene expression analysis; hair samples were microscopically imaged; and skin was analyzed for delayed-type hypersensitivity (DTH), sebum concentration, hydration status, and transepidermal water loss (TEWL). Data were analyzed as a change from baseline (CFB) using the Mixed Models procedure of SAS (version 9.4). At baseline, fecal pH was higher (P < 0.05) and hair surface score, superoxide dismutase (SOD) expression, and tumor necrosis factor-α (TNF-α) expression was lower (P < 0.05) in dogs allotted to JFFD. The decrease in CFB fecal pH and DM was greater (P < 0.05) in dogs fed JFFD, but fecal scores were not different. The increase in CFB hair surface score was higher (P < 0.05) in dogs fed JFFD. The decrease in CFB TEWL (back region) was greater (P < 0.05) in dogs fed JFFD, but TEWL (inguinal and ear regions), hydration status, and sebum concentrations in all regions were not different. Hair cortex scores and DTH responses were not affected by diet. The increase in CFB gene expression of SOD, COX-2, and TNF-α was greater (P < 0.05) in dogs fed JFFD. PCoA plots based on Bray-Curtis distances of bacterial genera and species showed small shifts over time in dogs fed BB, but dramatic shifts in those fed JFFD. JFFD increased (adj. P < 0.05) relative abundances of 4 bacterial genera, 11 bacterial species, 68 KEGG pathways, and 167 MetaCyc pathways, and decreased (adj. P < 0.05) 16 genera, 25 species, 98 KEGG pathways, and 87 MetaCyc pathways. In conclusion, the JFFD diet dramatically shifted the fecal microbiome but had minor effects on skin and coat measures and gene expression.


This study tested the effects of a mildly cooked human-grade diet and a feed-grade extruded kibble diet on the fecal microbiome, skin and coat health measures, and expression of genes related to inflammation and oxidative stress in healthy adult dogs. During a 4-week baseline, 20 beagles consumed the kibble diet. After baseline, 10 dogs continued to consume that diet, while 10 dogs consumed the mildly cooked diet for 12 weeks. After baseline and treatment phases, fresh fecal, blood, and hair samples were collected and skin was analyzed. The mildly cooked diet led to lower fecal pH and dry matter percentage, but fecal scores were not affected. The mildly cooked diet dramatically altered the fecal microbiome, shifting the relative abundances of over 30 bacterial species and 165 bacterial metabolic pathways. Measures of skin sebum content and hydration status were not different between groups, but skin water loss was lower in dogs consuming the mildly cooked diet. Baseline and post-treatment gene expression and hair surface scores were noted, but hair cortex and delayed-type hypersensitivity testing were not altered by diet. Our results demonstrate that mildly cooked diets dramatically change the fecal microbiome, but may not impact skin and coat in healthy adult dogs over a short time period.


Asunto(s)
Digestión , Microbiota , Alimentación Animal/análisis , Animales , Bacterias , Ciclooxigenasa 2/farmacología , Dieta/veterinaria , Perros , Heces/microbiología , Expresión Génica , Humanos , Superóxido Dismutasa , Factor de Necrosis Tumoral alfa , Agua
6.
Pesqui. vet. bras ; Pesqui. vet. bras;37(12): 1453-1459, dez. 2017. ilus, graf
Artículo en Portugués | LILACS, VETINDEX | ID: biblio-895391

RESUMEN

O estudo objetivou avaliar a adesão e a percepção dos proprietários de cães, residentes na cidade de São Paulo/SP, quanto ao emprego de dieta caseira no manejo nutricional de seu animal de estimação. Foram entrevistados por contato telefônico 55 proprietários que forneciam dieta caseira no manejo nutricional do seu cão. O questionário contemplou perguntas relacionadas ao preparo e eficiência das dietas, bem como o manejo dos animais. Verificou-se que considerável número (parcela) de prescrições (45,9%) esteve associado a pacientes com hiporexia. Dentre os proprietários que relataram dificuldade no preparo (10,9%), o tempo dispendido (33,3%) foi a maior problemática. Quando questionados em relação às modificações nas fórmulas prescritas, 60% admitiram que a realizaram sem prévia recomendação. Na opinião dos entrevistados, a dieta caseira não causou alterações nas fezes (50%) e na pelagem (62,7%) dos animais em comparação ao emprego de um alimento comercial e foi considerada adequada pela maioria (79,0%). As dietas caseiras podem ser amplamente utilizadas, mostrando-se especialmente importantes em cães doentes e/ou hiporéticos por apresentarem maior aceite em relação à dieta comercial, no entanto, nem todos os tutores estão aptos a utilizá-la.(AU)


The aim of this study was to evaluate the adhesion and perception of dog owners from the city of São Paulo, Brazil, on the employment of homemade diet for the nutritional management of their pet. The participants were 55 owners that provided homemade diet for their dog. The interviews were conducted by telephone and the questionnaire included points related with the preparation and effectiveness of diets, as well as the handling of animals. It was found that a considerable number of prescriptions (45.9%) was associated with patients with hyporexia. Among the owners who reported difficulty in the preparation (10.9%), time spent (33.3%) was the most problematic topic. When questioned in relation to changes in the prescribed formulas, 60% admitted that conducted it without recommendation. In the opinion of interviewed owners, the homemade diet did not cause changes in feces (50%) and coat (62.7%) of the animals compared to the use of a commercial food and was considered appropriate by the majority (79.0%). The homemade diets can be widely used, being especially important in dogs with diseases and/or dogs with hyporexia, since they are more easily accepted than the commercial diet; however, not all owners are able for its right use.(AU)


Asunto(s)
Humanos , Animales , Perros , Anorexia/veterinaria , Dieta/métodos , Dietoterapia/veterinaria , Prescripciones/veterinaria , Encuestas y Cuestionarios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA