Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Curr Genet ; 61(4): 579-89, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25782448

RESUMEN

To develop an efficient gene-targeting system in Mortierella alpina 1S-4, we identified the ku80 gene encoding the Ku80 protein, which is involved in the nonhomologous end-joining pathway in genomic double-strand break (DSB) repair, and constructed ku80 gene-disrupted strains via single-crossover homologous recombination. The Δku80 strain from M. alpina 1S-4 showed no negative effects on vegetative growth, formation of spores, and fatty acid productivity, and exhibited high sensitivity to methyl methanesulfonate, which causes DSBs. Dihomo-γ-linolenic acid (DGLA)-producing strains were constructed by disruption of the Δ5-desaturase gene, encoding a key enzyme of bioconversion of DGLA to ARA, using the Δku80 strain as a host strain. The significant improvement of gene-targeting efficiency was not observed by disruption of the ku80 gene, but the construction of DGLA-producing strain by disruption of the Δ5-desaturase gene was succeeded using the Δku80 strain as a host strain. This report describes the first study on the identification and disruption of the ku80 gene in zygomycetes and construction of a DGLA-producing transformant using a gene-targeting system in M. alpina 1S-4.


Asunto(s)
Ácido 8,11,14-Eicosatrienoico/metabolismo , ADN de Hongos/genética , ADN/genética , Marcación de Gen , Mortierella/genética , Ácido Araquidónico/metabolismo , ADN/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , ADN de Hongos/metabolismo , delta-5 Desaturasa de Ácido Graso , Ácido Graso Desaturasas/deficiencia , Ácido Graso Desaturasas/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ingeniería Genética , Recombinación Homóloga , Mesilatos/farmacología , Mortierella/clasificación , Mortierella/efectos de los fármacos , Mortierella/metabolismo , Filogenia
2.
Biosci Biotechnol Biochem ; 72(2): 435-44, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18256477

RESUMEN

The liverwort Marchantia polymorpha L. synthesizes arachidonic (ARA) and eicosapentaenoic acids (EPA) from linoleic and alpha-linolenic acids respectively by a series of reactions catalyzed by Delta6-desaturase, Delta6-elongase, and Delta5-desaturase. Overexpression of the M. polymorpha genes encoding these enzymes in transgenic M. polymorpha plants resulted in 3- and 2-fold accumulation of ARA and EPA respectively, as compared to those in the wild type. When these three genes were introduced and co-expressed in tobacco plants, in which long-chain polyunsaturated fatty acids (LCPUFAs) are not native cellular components, ARA and EPA represented up to 15.5% and 4.9% respectively of the total fatty acid in the leaves. Similarly in soybean, C20-LCPUFAs represented up to 19.5% of the total fatty acids in the seeds. These results suggest that M. polymorpha can provide genes crucial to the production of C20-LCPUFAs in transgenic plants.


Asunto(s)
Ácidos Araquidónicos/biosíntesis , Ácido Eicosapentaenoico/biosíntesis , Ácido Graso Desaturasas/metabolismo , Glycine max/metabolismo , Hepatophyta/metabolismo , Secuencia de Bases , Cartilla de ADN , Cromatografía de Gases y Espectrometría de Masas , Hepatophyta/enzimología , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Glycine max/enzimología
3.
Appl Environ Microbiol ; 71(9): 5124-8, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16151095

RESUMEN

An oleaginous fungus, Mortierella alpina 1S-4, is used commercially for arachidonic acid production. Delta12-Desaturase, which desaturates oleic acid (18:1n-9) to linoleic acid (18:2n-6), is a key enzyme in the arachidonic acid biosynthetic pathway. To determine if RNA interference (RNAi) by double-stranded RNA occurs in M. alpina 1S-4, we silenced the Delta12-desaturase gene. The silenced strains accumulate 18:2n-9, 20:2n-9, and Mead acid (20:3n-9), which are not detected in either the control strain or wild type strain 1S-4. The fatty acid composition of stable transformants was similar to that of Delta12-desaturation-defective mutants previously identified. Thus, RNAi occurs in M. alpina and could be used to alter the types and relative amounts of fatty acids produced by commercial strains of this fungus without mutagenesis or other permanent changes in the genetic background of the producing strains.


Asunto(s)
Ácido Graso Desaturasas/metabolismo , Ácidos Grasos Insaturados/análisis , Mortierella/química , Interferencia de ARN , Ácido Araquidónico/biosíntesis , Medios de Cultivo , Ácido Graso Desaturasas/genética , Ácidos Grasos Insaturados/biosíntesis , Silenciador del Gen , Microbiología Industrial/métodos , Mortierella/genética , Mortierella/crecimiento & desarrollo , Mortierella/metabolismo , ARN de Hongos/metabolismo , Transformación Genética
4.
J Biosci Bioeng ; 100(6): 617-22, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16473770

RESUMEN

The arachidonic acid-producing fungus Mortierella alpina 1S-4, an industrial strain, was endowed with Zeocin resistance by integration of the Zeocin-resistance gene at the rDNA locus of genomic DNA. Plasmid DNA was introduced into spores by microprojectile bombardment. Twenty mg/ml Zeocin completely inhibited the germination of M. alpina 1S-4 spores, and decreased the growth rate of fungal filaments to some extent. It was suggested that preincubation period and temperature had a great influence on transformation efficiency. Four out of 26 isolated transformants were selected. Molecular analysis of these stable transformants showed that the plasmid DNA was integrated into the rDNA locus of the genomic DNA. We expect that this system will be applied for useful oil production by gene manipulation of M. alpina 1S-4 and its derivative mutants. On the basis of the fundamental transformation system, we also tried to overexpress a homologous polyunsaturated fatty acid elongase gene, which has been reported to be included in the rate-limiting step for arachidonic acid production, thereby leading to increased arachidonic acid production.


Asunto(s)
Ácido Araquidónico/biosíntesis , Bleomicina/farmacología , Farmacorresistencia Fúngica/genética , Mejoramiento Genético/métodos , Mortierella/genética , Mortierella/metabolismo , Transfección/métodos , Técnicas de Cultivo de Célula/métodos , Mortierella/efectos de los fármacos
5.
Appl Microbiol Biotechnol ; 65(4): 419-25, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15138730

RESUMEN

Oil-producing fungus Mortierella alpina 1S-4 is an industrial strain. To determine its physiological properties and to clarify the biosynthetic pathways for polyunsaturated fatty acids, a transformation system for this fungus was established using a derivative of it, i.e., a ura5- mutant lacking orotate phosphoribosyl transferase (OPRTase, EC.2.4.2.10) activity. Transformation with a vector containing the homologous ura5 gene as a marker was successfully performed using microprojectile bombardment, other methods frequently used for transformation, such as the protoplasting, lithium acetate, or electroporation methods, not giving satisfactory results. As a result, two types of transformants were obtained: a few stable transformants overexpressing the ura5 gene, and many unstable transformants showing OPRTase activity comparable to that of the wild-type strain. The results of quantitative PCR indicated that the stable transformants could retain the ura5 genes originating from the transformation vector regardless of the culture conditions. On the other hand, unstable transformants easily lost the marker gene under uracil-containing conditions, as expected. In this paper, we report that an overall transformation system for this fungus was successfully established, and propose how to select useful transformants as experimental and industrial strains.


Asunto(s)
Mortierella/genética , Orotato Fosforribosiltransferasa/genética , Transformación Genética , Acetatos/farmacología , Medios de Cultivo/química , Electroporación , Genes Fúngicos , Vectores Genéticos , Mortierella/metabolismo , Mutación , Aceites/metabolismo , Orotato Fosforribosiltransferasa/metabolismo , Protoplastos , Selección Genética
6.
Plant Physiol ; 130(4): 2164-76, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12481100

RESUMEN

A beta-primeverosidase from tea (Camellia sinensis) plants is a unique disaccharide-specific glycosidase, which hydrolyzes aroma precursors of beta-primeverosides (6-O-beta-D-xylopyranosyl-beta-D-glucopyranosides) to liberate various aroma compounds, and the enzyme is deeply concerned with the floral aroma formation in oolong tea and black tea during the manufacturing process. The beta-primeverosidase was purified from fresh leaves of a cultivar for green tea (C. sinensis var sinensis cv Yabukita), and its partial amino acid sequences were determined. The beta-primeverosidase cDNA has been isolated from a cDNA library of cv Yabukita using degenerate oligonucleotide primers. The cDNA insert encodes a polypeptide consisting of an N-terminal signal peptide of 28 amino acid residues and a 479-amino acid mature protein. The beta-primeverosidase protein sequence was 50% to 60% identical to beta-glucosidases from various plants and was classified in a family 1 glycosyl hydrolase. The mature form of the beta-primeverosidase expressed in Escherichia coli was able to hydrolyze beta-primeverosides to liberate a primeverose unit and aglycons, but did not act on 2-phenylethyl beta-D-glucopyranoside. These results indicate that the beta-primeverosidase selectively recognizes the beta-primeverosides as substrates and specifically hydrolyzes the beta-glycosidic bond between the disaccharide and the aglycons. The stereochemistry for enzymatic hydrolysis of 2-phenylethyl beta-primeveroside by the beta-primeverosidase was followed by (1)H-nuclear magnetic resonance spectroscopy, revealing that the enzyme hydrolyzes the beta-primeveroside by a retaining mechanism. The roles of the beta-primeverosidase in the defense mechanism in tea plants and the floral aroma formation during tea manufacturing process are also discussed.


Asunto(s)
Glicósido Hidrolasas/genética , Hojas de la Planta/genética , Proteínas de Plantas , Té/genética , Secuencia de Aminoácidos , Secuencia de Bases , Transporte Biológico , Clonación Molecular , ADN Complementario/química , ADN Complementario/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glicósido Hidrolasas/aislamiento & purificación , Glicósido Hidrolasas/metabolismo , Glicosilación , Hidrólisis , Datos de Secuencia Molecular , Odorantes/análisis , Filogenia , Hojas de la Planta/metabolismo , Análisis de Secuencia de ADN , Té/química , Té/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA