Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Biol Macromol ; 269(Pt 2): 131840, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679255

RESUMEN

The tumor suppressor p53 plays a crucial role in cellular responses to various stresses, regulating key processes such as apoptosis, senescence, and DNA repair. Dysfunctional p53, prevalent in approximately 50 % of human cancers, contributes to tumor development and resistance to treatment. This study employed deep learning-based protein design and structure prediction methods to identify novel high-affinity peptide binders (Pep1 and Pep2) targeting MDM2, with the aim of disrupting its interaction with p53. Extensive all-atom molecular dynamics simulations highlighted the stability of the designed peptide in complex with the target, supported by several structural analyses, including RMSD, RMSF, Rg, SASA, PCA, and free energy landscapes. Using the steered molecular dynamics and umbrella sampling simulations, we elucidate the dissociation dynamics of p53, Pep1, and Pep2 from MDM2. Notable differences in interaction profiles were observed, emphasizing the distinct dissociation patterns of each peptide. In conclusion, the results of our umbrella sampling simulations suggest Pep1 as a higher-affinity MDM2 binder compared to p53 and Pep2, positioning it as a potential inhibitor of the MDM2-p53 interaction. Using state-of-the-art protein design tools and advanced MD simulations, this study provides a comprehensive framework for rational in silico design of peptide binders with therapeutic implications in disrupting MDM2-p53 interactions for anticancer interventions.


Asunto(s)
Simulación de Dinámica Molecular , Péptidos , Unión Proteica , Proteínas Proto-Oncogénicas c-mdm2 , Proteína p53 Supresora de Tumor , Proteínas Proto-Oncogénicas c-mdm2/química , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Péptidos/química , Péptidos/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/química , Humanos , Termodinámica , Diseño de Fármacos
2.
Genetics ; 225(2)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37579186

RESUMEN

Melanoma antigen (MAGE) genes encode for a family of proteins that share a common MAGE homology domain. These genes are conserved in eukaryotes and have been linked to a variety of cellular and developmental processes including ubiquitination and oncogenesis in cancer. Current knowledge on the MAGE family of proteins mainly comes from the analysis of yeast and human cell lines, and their functions have not been reported at an organismal level in animals. Caenorhabditis elegans only encodes 1 known MAGE gene member, mage-1 (NSE3 in yeast), forming part of the SMC-5/6 complex. Here, we characterize the role of mage-1/nse-3 in mitosis and meiosis in C. elegans. mage-1/nse-3 has a role in inter-sister recombination repair during meiotic recombination and for preserving chromosomal integrity upon treatment with a variety of DNA-damaging agents. MAGE-1 directly interacts with NSE-1 and NSE-4. In contrast to smc-5, smc-6, and nse-4 mutants which cause the loss of NSE-1 nuclear localization and strong cytoplasmic accumulation, mage-1/nse-3 mutants have a reduced level of NSE-1::GFP, remnant NSE-1::GFP being partially nuclear but largely cytoplasmic. Our data suggest that MAGE-1 is essential for NSE-1 stability and the proper functioning of the SMC-5/6 complex.


Asunto(s)
Proteínas de Caenorhabditis elegans , Inestabilidad Genómica , Animales , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Meiosis/genética , Saccharomyces cerevisiae/genética
3.
Nutrients ; 15(12)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37375545

RESUMEN

Dendrobium officinale is one of the most widely used medicinal herbs, especially in Asia. In recent times, the polysaccharide content of D. officinale has garnered attention due to the numerous reports of its medicinal properties, such as anticancer, antioxidant, anti-diabetic, hepatoprotective, neuroprotective, and anti-aging activities. However, few reports of its anti-aging potential are available. Due to high demand, the wild D. officinale is scarce; hence, alternative cultivation methods are being employed. In this study, we used the Caenorhabditis elegans model to investigate the anti-aging potential of polysaccharides extracted from D. officinale (DOP) grown in three different environments; tree (TR), greenhouse (GH), and rock (RK). Our findings showed that at 1000 µg/mL, GH-DOP optimally extended the mean lifespan by 14% and the maximum lifespan by 25% (p < 0.0001). TR-DOP and RK-DOP did not extend their lifespan at any of the concentrations tested. We further showed that 2000 µg/mL TR-DOP, GH-DOP, or RK-DOP all enhanced resistance to H2O2-induced stress (p > 0.05, p < 0.01, and p < 0.01, respectively). In contrast, only RK-DOP exhibited resistance (p < 0.01) to thermal stress. Overall, DOP from the three sources all increased HSP-4::GFP levels, indicating a boost in the ability of the worms to respond to ER-related stress. Similarly, DOP from all three sources decreased α-synuclein aggregation; however, only GH-DOP delayed ß-amyloid-induced paralysis (p < 0.0001). Our findings provide useful information on the health benefits of DOP and also provide clues on the best practices for cultivating D. officinale for maximum medicinal applications.


Asunto(s)
Dendrobium , Animales , Caenorhabditis elegans , Peróxido de Hidrógeno , Polisacáridos/farmacología , Antioxidantes/farmacología
4.
Microbiol Spectr ; 10(5): e0202722, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-35980200

RESUMEN

Aspergillus flavus causes invasive aspergillosis in immunocompromised patients and severe contamination of agriculturally important crops by producing aflatoxins. The fungal cell wall is absent in animals and is structurally different from that of plants, which makes it a potential antifungal drug target due to its essentiality for fungal survival. Mannose is one of the important components in the fungal cell wall, which requires GDP-mannose (GDP-Man) as the primary donor. Three consecutive enzymes, namely, phosphomannose isomerase (PMI), phosphomannose mutase (PMM), and GDP-mannose phosphorylase (GMPP), are required for GDP-Man biosynthesis. Thus, PMI is of prime importance in cell wall biosynthesis and also has an active role in sugar metabolism. Here, we investigated the functional role of PMI in A. flavus by generating a pmiA-deficient strain. The mutant required exogenous mannose to survive and exhibited reduced growth rate, impaired conidiation, early germination, disturbance in stress responses, and defects in colonization of crop seeds. Furthermore, attenuated virulence of the mutant was documented in both Caenorhabditis elegans and Galleria mellonella infection models. Our results suggested that PMI plays an important role in the development, stress responses, and pathogenicity of A. flavus and therefore could serve as a potential target for battling against infection and controlling aflatoxin contamination caused by A. flavus. IMPORTANCE Aspergillus flavus is a common fungal pathogen of humans, animals, and agriculturally important crops. It causes invasive aspergillosis in humans and also produces highly carcinogenic mycotoxins in postharvest crops that threaten food safety worldwide. To alleviate or eliminate the threats posed by A. flavus, it is necessary to identify genes involved in pathogenicity and mycotoxin contamination. However, little progress has been made in this regard. Here, we focused on PMI, which is the first enzyme involved in the biosynthesis pathway of GDP-Man and thus is important for cell wall synthesis and protein glycosylation. Our study revealed that PMI is important for growth of A. flavus. It is also involved in conidiation, germination, morphogenesis, stress responses, and pathogenicity of A. flavus. Thus, PMI is a potent antifungal target to curb the threats posed by A. flavus.


Asunto(s)
Aflatoxinas , Aspergilosis , Transferasas Intramoleculares , Animales , Humanos , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Virulencia/genética , Manosa-6-Fosfato Isomerasa/genética , Manosa-6-Fosfato Isomerasa/metabolismo , Antifúngicos , Manosa/metabolismo , Aflatoxinas/metabolismo , Transferasas Intramoleculares/metabolismo , Proteínas Fúngicas/genética
5.
J Ethnopharmacol ; 293: 115259, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35381308

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Fagara zanthoxyloides Lam., an African traditional medicinal plant, is used for treatment of malaria and diabetes. AIM: To investigate the antidiabetic property of ethyl acetate fraction of F. zanthoxyloides root-bark (EAFFZRB) on alloxan-induced diabetic rats. MATERIALS AND METHODS: Extraction, isolation, preliminary phytochemical analysis, and acute toxicity study of ethanol extract and fractions of F. zanthoxyloides root-bark were achieved using standard methods. Phyto-constituents in EAFFZRB were identified using HPLC technique. Forty-eight male Wistar rats (140-185 g) were randomized into 6 groups (n = 8). Groups 1 and 2 served as normal and negative controls, respectively. Diabetes was induced in test groups (2-6) using 150 mg/kg body weight (b.w) Alloxan monohydrate. Rats in groups 4-6 received of 200, 400 and 600 mg/kg b.w. EAFFZRB orally, respectively, for 21 days. Group 3 rats received 5 mg/kg b.w Glibenclamide. The effect of EAFFZRB on alterations in hematological, biochemical, and histological indices of study rats were assessed. RESULTS: Extraction of 3500 g ethanol extract yielded 15.71 g EAFFZRB. HPLC fingerprint of EAFFZRB indicated presence of luteolin, rutin, quercetin, apigenin, cinnamic acid and catechin. Diabetes triggered significant (p < 0.05) alterations in b.w., hematological, biochemical and histological indices of test rats relative to normal control. Treatment with EAFFZRB (LD50 = 3807.9 mg/kg b.w.) resulted in remarkable improvements in altered b.w. changes, hematological, biochemical and histological parameters of diabetic rats. CONCLUSION: The study demonstrated the antidiabetic potential of EAFFZRB, providing scientific basis for traditional use of the plant in treatment of diabetes and its complications.


Asunto(s)
Diabetes Mellitus Experimental , Zanthoxylum , Acetatos , Aloxano , Animales , Glucemia , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/tratamiento farmacológico , Etanol/uso terapéutico , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Masculino , Corteza de la Planta/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ratas , Ratas Wistar
6.
Molecules ; 26(23)2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34885907

RESUMEN

In the forms of either herbs or functional foods, plants and their products have attracted medicinal, culinary, and nutraceutical applications due to their abundance in bioactive phytochemicals. Human beings and other animals have employed those bioactive phytochemicals to improve health quality based on their broad potentials as antioxidant, anti-microbial, anti-carcinogenic, anti-inflammatory, neuroprotective, and anti-aging effects, amongst others. For the past decade and half, efforts to discover bioactive phytochemicals both in pure and crude forms have been intensified using the Caenorhabditis elegans aging model, in which various metabolic pathways in humans are highly conserved. In this review, we summarized the aging and longevity pathways that are common to C. elegans and humans and collated some of the bioactive phytochemicals with health benefits and lifespan extending effects that have been studied in C. elegans. This simple animal model is not only a perfect system for discovering bioactive compounds but is also a research shortcut for elucidating the amelioration mechanisms of aging risk factors and associated diseases.


Asunto(s)
Envejecimiento/efectos de los fármacos , Caenorhabditis elegans/efectos de los fármacos , Longevidad/efectos de los fármacos , Fitoquímicos/farmacología , Animales , Caenorhabditis elegans/fisiología , Humanos , Redes y Vías Metabólicas/efectos de los fármacos
7.
Open Life Sci ; 16(1): 431-441, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33987480

RESUMEN

A new approach is adopted to treat primary immunodeficiency disorders, such as the severe combined immunodeficiency (SCID; e.g., adenosine deaminase SCID [ADA-SCID] and IL-2 receptor X-linked severe combined immunodeficiency [SCID-X1]). The success, along with the feasibility of gene therapy, is undeniable when considering the benefits recorded for patients with different classes of diseases or disorders needing treatment, including SCID-X1 and ADA-SCID, within the last two decades. ß-Thalassemia and sickle cell anemia are two prominent monogenic blood hemoglobin disorders for which a solution has been sought using gene therapy. For instance, transduced autologous CD34+ HSCs via a self-inactivating (SIN)-Lentivirus (LV) coding for a functional copy of the ß-globin gene has become a feasible procedure. adeno-associated virus (AAV) vectors have found application in ocular gene transfer in retinal disease gene therapy (e.g., Leber's congenital amaurosis type 2), where no prior treatment existed. In neurodegenerative disorders, successes are now reported for cases involving metachromatic leukodystrophy causing severe cognitive and motor damage. Gene therapy for hemophilia also remains a viable option because of the amount of cell types that are capable of synthesizing biologically active FVIII and FIX following gene transfer using AAV vectors in vivo to correct hemophilia B (FIX deficiency), and it is considered an ideal target, as proven in preclinical studies. Recently, the clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 gene-editing tool has taken a center stage in gene therapy research and is reported to be efficient and highly precise. The application of gene therapy to these areas has pushed forward the therapeutic clinical application.

8.
Front Cell Infect Microbiol ; 11: 777266, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34976860

RESUMEN

Aspergillus flavus is one of the important human and plant pathogens causing not only invasive aspergillosis in immunocompromised patients but also crop contamination resulting from carcinogenic aflatoxins (AFs). Investigation of the targeting factors that are involved in pathogenicity is of unmet need to dismiss the hazard. Phosphoglucose isomerase (PGI) catalyzes the reversible conversion between glucose-6-phosphate and fructose-6-phosphate, thus acting as a key node for glycolysis, pentose phosphate pathway, and cell wall biosynthesis in fungi. In this study, we constructed an A. flavus pgi deletion mutant, which exhibited specific carbon requirement for survival, reduced conidiation, and slowed germination even under optimal experimental conditions. The Δpgi mutant lost the ability to form sclerotium and displayed hypersusceptibility to osmotic, oxidative, and temperature stresses. Furthermore, significant attenuated virulence of the Δpgi mutant was documented in the Caenorhabditis elegans infection model, Galleria mellonella larval model, and crop seeds. Our results indicate that PGI in A. flavus is a key enzyme in maintaining sugar homeostasis, stress response, and pathogenicity of A. flavus. Therefore, PGI is a potential target for controlling infection and AF contamination caused by A. flavus.


Asunto(s)
Aflatoxinas , Aspergillus flavus , Glucosa-6-Fosfato Isomerasa , Aspergillus flavus/enzimología , Aspergillus flavus/patogenicidad , Proteínas Fúngicas/genética , Glucosa-6-Fosfato Isomerasa/genética , Homeostasis , Azúcares , Virulencia
9.
Plant Sci ; 297: 110525, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32563465

RESUMEN

The aim of this study is to elucidate the role of ALDH2B7a during the response to lower temperature in Solanum tuberosum. This gene was found to have altered intragenic DNA methylation status in our previous reports. A total of 18 orthologs of StALDH2B7a were identified in the S. tuberosum genome, which were then divided into 8 aldehyde dehydrogenase (ALDH) subfamilies. The methylation statuses of four intragenic cytosine sites in intron 5 and exon 6 of genomic StALDH2B7a were altered by lower temperature stress, resulting in changes in the expression of StALDH2B7a. Silencing of NbALDH2C4, a homolog of StALDH2B7a in Nicotiana benthamiana, resulted in plants which were sensitive to lower temperature and accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA). These data suggested that the expression of StALDH2B7a was upregulated by alteration of its intragenic cytosine methylation status during lower temperature stress, and additional StALDH2B7a enzymes scavenged excess aldehydes resulting from ROS in a response to cold stress in potato. Our study expands the understanding of the mechanisms involved in plant responses to lower temperature, and provides a new gene source to improve potato tolerance to cold stress in northern China, where lower temperature is one of the key limiting factors for crop production.


Asunto(s)
Aldehído Deshidrogenasa/fisiología , Nicotiana/enzimología , Proteínas de Plantas/fisiología , Solanum tuberosum/enzimología , Respuesta al Choque por Frío , Metilación de ADN , Genes de Plantas/genética , Genes de Plantas/fisiología , Malondialdehído/metabolismo , Filogenia , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Solanum tuberosum/fisiología , Nicotiana/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA