Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Haematologica ; 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38235501

RESUMEN

D-2-hydroxyglutarate (D-2-HG) accumulates in primary acute myeloid leukemia (AML) patients with mutated isocitrate dehydrogenase (IDH) and other malignancies. D-2-HG suppresses antitumor T cell immunity but little is known about potential effects on non-malignant myeloid cells. Here we show that D-2-HG impairs human but not murine dendritic cell (DC) differentiation, resulting in a tolerogenic phenotype with low major histocompatibility (MHC) class II expression. In line, IDH-mutated AML blasts exhibited lower expression of HLA-DP and were less susceptible to lysis by HLA-DP-specific T cells. Interestingly, D-2-HG reprogrammed metabolism towards increased lactate production in DCs and AML besides its expected impact on DNA demethylation. Vitamin C accelerated DNA demethylation, but only the combination of vitamin C and glycolytic inhibition lowered lactate levels and supported MHC class II expression. Our results indicate an unexpected link between the immunosuppressive metabolites 2-HG and lactic acid and suggest a potentially novel therapeutic strategy with combinations of anti-glycolytic drugs and epigenetic modulators (hypomethylating agents) or other therapeutics for the treatment of AML.

2.
J Immunother Cancer ; 11(10)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37880183

RESUMEN

BACKGROUND & AIMS: Intratumoral lactate accumulation and acidosis impair T-cell function and antitumor immunity. Interestingly, expression of the lactate transporter monocarboxylate transporter (MCT) 4, but not MCT1, turned out to be prognostic for the survival of patients with rectal cancer, indicating that single MCT4 blockade might be a promising strategy to overcome glycolysis-related therapy resistance. METHODS: To determine whether blockade of MCT4 alone is sufficient to improve the efficacy of immune checkpoint blockade (ICB) therapy, we examined the effects of the selective MCT1 inhibitor AZD3965 and a novel MCT4 inhibitor in a colorectal carcinoma (CRC) tumor spheroid model co-cultured with blood leukocytes in vitro and the MC38 murine CRC model in vivo in combination with an antibody against programmed cell death ligand-1(PD-L1). RESULTS: Inhibition of MCT4 was sufficient to reduce lactate efflux in three-dimensional (3D) CRC spheroids but not in two-dimensional cell-cultures. Co-administration of the MCT4 inhibitor and ICB augmented immune cell infiltration, T-cell function and decreased CRC spheroid viability in a 3D co-culture model of human CRC spheroids with blood leukocytes. Accordingly, combination of MCT4 and ICB increased intratumoral pH, improved leukocyte infiltration and T-cell activation, delayed tumor growth, and prolonged survival in vivo. MCT1 inhibition exerted no further beneficial impact. CONCLUSIONS: These findings demonstrate that single MCT4 inhibition represents a novel therapeutic approach to reverse lactic-acid driven immunosuppression and might be suitable to improve ICB efficacy.


Asunto(s)
Neoplasias Colorrectales , Inhibidores de Puntos de Control Inmunológico , Animales , Humanos , Ratones , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Glucólisis , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores
3.
Front Oncol ; 13: 1120194, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36741028

RESUMEN

Introduction: Glutamine deficiency is a well-known feature of the tumor environment. Here we analyzed the impact of glutamine deprivation on human myeloid cell survival and function. Methods: Different types of myeloid cells were cultured in the absence or presence of glutamine and/or with L-methionine-S-sulfoximine (MSO), an irreversible glutamine synthetase (GS) inhibitor. GS expression was analyzed on mRNA and protein level. GS activity and the conversion of glutamate to glutamine by myeloid cells was followed by 13C tracing analyses. Results: The absence of extracellular glutamine only slightly affected postmitotic human monocyte to dendritic cell (DC) differentiation, function and survival. Similar results were obtained for monocyte-derived macrophages. In contrast, proliferation of the monocytic leukemia cell line THP-1 was significantly suppressed. While macrophages exhibited high constitutive GS expression, glutamine deprivation induced GS in DC and THP-1. Accordingly, proliferation of THP-1 was rescued by addition of the GS substrate glutamate and 13C tracing analyses revealed conversion of glutamate to glutamine. Supplementation with the GS inhibitor MSO reduced the survival of DC and macrophages and counteracted the proliferation rescue of THP-1 by glutamate. Discussion: Our results show that GS supports myeloid cell survival in a glutamine poor environment. Notably, in addition to suppressing proliferation and survival of tumor cells, the blockade of GS also targets immune cells such as DCs and macrophages.

4.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36834608

RESUMEN

Glioblastomas are highly malignant brain tumors that derive from brain-tumor-initiating cells (BTICs) and can be subdivided into several molecular subtypes. Metformin is an antidiabetic drug currently under investigation as a potential antineoplastic agent. The effects of metformin on glucose metabolism have been extensively studied, but there are only few data on amino acid metabolism. We investigated the basic amino acid profiles of proneural and mesenchymal BTICs to explore a potential distinct utilization and biosynthesis in these subgroups. We further measured extracellular amino acid concentrations of different BTICs at baseline and after treatment with metformin. Effects of metformin on apoptosis and autophagy were determined using Western Blot, annexin V/7-AAD FACS-analyses and a vector containing the human LC3B gene fused to green fluorescent protein. The effects of metformin on BTICs were challenged in an orthotopic BTIC model. The investigated proneural BTICs showed increased activity of the serine and glycine pathway, whereas mesenchymal BTICs in our study preferably metabolized aspartate and glutamate. Metformin treatment led to increased autophagy and strong inhibition of carbon flux from glucose to amino acids in all subtypes. However, oral treatment with metformin at tolerable doses did not significantly inhibit tumor growth in vivo. In conclusion, we found distinct amino acid profiles of proneural and mesenchymal BTICs, and inhibitory effects of metformin on BTICs in vitro. However, further studies are warranted to better understand potential resistance mechanisms against metformin in vivo.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Metformina , Humanos , Aminoácidos/metabolismo , Glioblastoma/metabolismo , Neoplasias Encefálicas/metabolismo , Metformina/farmacología , Encéfalo/metabolismo , Células Madre Neoplásicas/metabolismo , Línea Celular Tumoral , Proliferación Celular
5.
Front Immunol ; 14: 960927, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36793725

RESUMEN

Background: Coxiella burnetii is a zoonotic pathogen, infecting humans, livestock, pets, birds and ticks. Domestic ruminants such as cattle, sheep, and goats are the main reservoir and major cause of human infection. Infected ruminants are usually asymptomatic, while in humans infection can cause significant disease. Human and bovine macrophages differ in their permissiveness for C. burnetii strains from different host species and of various genotypes and their subsequent host cell response, but the underlying mechanism(s) at the cellular level are unknown. Methods: C. burnetii infected primary human and bovine macrophages under normoxic and hypoxic conditions were analyzed for (i) bacterial replication by CFU counts and immunofluorescence; (ii) immune regulators by westernblot and qRT-PCR; cytokines by ELISA; and metabolites by gas chromatography-mass spectrometry (GC-MS). Results: Here, we confirmed that peripheral blood-derived human macrophages prevent C. burnetii replication under oxygen-limiting conditions. In contrast, oxygen content had no influence on C. burnetii replication in bovine peripheral blood-derived macrophages. In hypoxic infected bovine macrophages, STAT3 is activated, even though HIF1α is stabilized, which otherwise prevents STAT3 activation in human macrophages. In addition, the TNFα mRNA level is higher in hypoxic than normoxic human macrophages, which correlates with increased secretion of TNFα and control of C. burnetii replication. In contrast, oxygen limitation does not impact TNFα mRNA levels in C. burnetii-infected bovine macrophages and secretion of TNFα is blocked. As TNFα is also involved in the control of C. burnetii replication in bovine macrophages, this cytokine is important for cell autonomous control and its absence is partially responsible for the ability of C. burnetii to replicate in hypoxic bovine macrophages. Further unveiling the molecular basis of macrophage-mediated control of C. burnetii replication might be the first step towards the development of host directed intervention measures to mitigate the health burden of this zoonotic agent.


Asunto(s)
Coxiella burnetii , Fiebre Q , Animales , Bovinos , Citocinas/metabolismo , Hipoxia/metabolismo , Macrófagos , Oxígeno/metabolismo , Rumiantes , Factor de Necrosis Tumoral alfa/metabolismo
6.
Cell Prolif ; 56(7): e13397, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36631409

RESUMEN

The beneficial effects of hair follicle stem cells in different animal models of nervous system conditions have been extensively studied. While chick embryo extract (CEE) has been used as a growth medium supplement for these stem cells, this is the first study to show the effect of CEE on them. The rat hair follicle stem cells were isolated and supplemented with 10% fetal bovine serum plus 10% CEE. The migration rate, proliferative capacity and multipotency were evaluated along with morphometric alteration and differentiation direction. The proteome analysis of CEE content identified effective factors of CEE that probably regulate fate and function of stem cells. The CEE enhances the migration rate of stem cells from explanted bulges as well as their proliferation, likely due to activation of AP-1 and translationally controlled tumour protein (TCTP) by thioredoxin found in CEE. The increased length of outgrowth may be the result of cyclic AMP response element binding protein (CREB) phosphorylation triggered by active CamKII contained in CEE. Further, CEE supplementation upregulates the expression of vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. The elevated expression of target genes and proteins may be due to CREB, AP-1 and c-Myc activation in these stem cells. Given the increased transcript levels of neurotrophins, VEGF, and the expression of PDGFR-α, S100B, MBP and SOX-10 protein, it is possible that CEE promotes the fate of these stem cells towards Schwann cells.


Asunto(s)
Folículo Piloso , Factor A de Crecimiento Endotelial Vascular , Ratas , Embrión de Pollo , Animales , Factor A de Crecimiento Endotelial Vascular/farmacología , Factor de Transcripción AP-1/farmacología , Diferenciación Celular , Células de Schwann/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Células Madre/metabolismo , Células Cultivadas
7.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36232951

RESUMEN

Brain-tumor-initiating cells (BTICs) of proneural and mesenchymal origin contribute to the highly malignant phenotype of glioblastoma (GB) and resistance to current therapies. BTICs of different subtypes were challenged with oxidative phosphorylation (OXPHOS) inhibition with metformin to assess the differential effects of metabolic intervention on key resistance features. Whereas mesenchymal BTICs varied according to their invasiveness, they were in general more glycolytic and less responsive to metformin. Proneural BTICs were less invasive, catabolized glucose more via the pentose phosphate pathway, and responded better to metformin. Targeting glycolysis may be a promising approach to inhibit tumor cells of mesenchymal origin, whereas proneural cells are more responsive to OXPHOS inhibition. Future clinical trials exploring metabolic interventions should account for metabolic heterogeneity of brain tumors.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Metformina , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Glioblastoma/metabolismo , Glucosa/metabolismo , Humanos , Metformina/metabolismo , Metformina/farmacología , Metformina/uso terapéutico , Células Madre Neoplásicas/metabolismo
8.
Int J Mol Sci ; 23(11)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35682650

RESUMEN

Accelerated glycolysis leads to secretion and accumulation of lactate and protons in the tumor environment and determines the efficacy of adoptive T cell and checkpoint inhibition therapy. Here, we analyzed effects of lactic acid on different human CD4 T cell subsets and aimed to increase CD4 T cell resistance towards lactic acid. In all CD4 T cell subsets analyzed, lactic acid inhibited metabolic activity (glycolysis and respiration), cytokine secretion, and cell proliferation. Overexpression of the lactate-metabolizing isoenzyme LDHB increased cell respiration and mitigated lactic acid effects on intracellular cytokine production. Strikingly, LDHB-overexpressing cells preferentially migrated into HCT116 tumor spheroids and displayed higher expression of cytotoxic effector molecules. We conclude, that LDHB overexpression might be a promising strategy to increase the efficacy of adoptive T cell transfer therapy.


Asunto(s)
Lactato Deshidrogenasas/metabolismo , Ácido Láctico , Neoplasias , Línea Celular Tumoral , Citocinas/metabolismo , Glucólisis , Humanos , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Ácido Láctico/metabolismo , Neoplasias/metabolismo , Linfocitos T/metabolismo
9.
Cancers (Basel) ; 14(11)2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35681741

RESUMEN

The isocitrate dehydrogenase (IDH) mutation status is an indispensable prerequisite for diagnosis of glioma (astrocytoma and oligodendroglioma) according to the WHO classification of brain tumors 2021 and is a potential therapeutic target. Usually, immunohistochemistry followed by sequencing of tumor tissue is performed for this purpose. In clinical routine, however, non-invasive determination of IDH mutation status is desirable in cases where tumor biopsy is not possible and for monitoring neuro-oncological therapies. In a previous publication, we presented reliable prediction of IDH mutation status employing proton magnetic resonance spectroscopy (1H-MRS) on a 3.0 Tesla (T) scanner and machine learning in a prospective cohort of 34 glioma patients. Here, we validated this approach in an independent cohort of 67 patients, for which 1H-MR spectra were acquired at 1.5 T between 2002 and 2007, using the same data analysis approach. Despite different technical conditions, a sensitivity of 82.6% (95% CI, 61.2-95.1%) and a specificity of 72.7% (95% CI, 57.2-85.0%) could be achieved. We concluded that our 1H-MRS based approach can be established in a routine clinical setting with affordable effort and time, independent of technical conditions employed. Therefore, the method provides a non-invasive tool for determining IDH status that is well-applicable in an everyday clinical setting.

10.
Front Immunol ; 13: 789366, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35493523

RESUMEN

Local tissue acidosis affects anti-tumor immunity. In contrast, data on tissue pH levels in infected tissues and their impact on antimicrobial activity is sparse. In this study, we assessed the pH levels in cutaneous Leishmania lesions. Leishmania major-infected skin tissue displayed pH levels of 6.7 indicating that lesional pH is acidic. Next, we tested the effect of low extracellular pH on the ability of macrophages to produce leishmanicidal NO and to fight the protozoan parasite Leishmania major. Extracellular acidification led to a marked decrease in both NO production and leishmanicidal activity of lipopolysaccharide (LPS) and interferon γ (IFN-γ)-coactivated macrophages. This was not directly caused by a disruption of NOS2 expression, a shortage of reducing equivalents (NAPDH) or substrate (L-arginine), but by a direct, pH-mediated inhibition of NOS2 enzyme activity. Normalization of intracellular pH significantly increased NO production and antiparasitic activity of macrophages even in an acidic microenvironment. Overall, these findings indicate that low local tissue pH can curtail NO production and leishmanicidal activity of macrophages.


Asunto(s)
Antiinfecciosos , Leishmania major , Antiinfecciosos/metabolismo , Antiparasitarios/metabolismo , Macrófagos , Óxido Nítrico/metabolismo
11.
Am J Kidney Dis ; 79(2): 217-230.e1, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34298143

RESUMEN

RATIONALE & OBJECTIVE: Stratification of chronic kidney disease (CKD) patients at risk for progressing to kidney failure requiring kidney replacement therapy (KFRT) is important for clinical decision-making and trial enrollment. STUDY DESIGN: Four independent prospective observational cohort studies. SETTING & PARTICIPANTS: The development cohort comprised 4,915 CKD patients, and 3 independent validation cohorts comprised a total of 3,063. Patients were observed for approximately 5 years. EXPOSURE: 22 demographic, anthropometric, and laboratory variables commonly assessed in CKD patients. OUTCOME: Progression to KFRT. ANALYTICAL APPROACH: A least absolute shrinkage and selection operator (LASSO) Cox proportional hazards model was fit to select laboratory variables that best identified patients at high risk for KFRT. Model discrimination and calibration were assessed and compared against the 4-variable Tangri (T4) risk equation both in a resampling approach within the development cohort and in the validation cohorts using cause-specific concordance (C) statistics, net reclassification improvement, and calibration graphs. RESULTS: The newly derived 6-variable risk score (Z6) included serum creatinine, albumin, cystatin C, and urea, as well as hemoglobin and the urinary albumin-creatinine ratio. In the the resampling approach, Z6 achieved a median C statistic of 0.909 (95% CI, 0.868-0.937) at 2 years after the baseline visit, whereas the T4 achieved a median C statistic of 0.855 (95% CI, 0.799-0.915). In the 3 independent validation cohorts, the Z6C statistics were 0.894, 0.921, and 0.891, whereas the T4C statistics were 0.882, 0.913, and 0.862. LIMITATIONS: The Z6 was both derived and tested only in White European cohorts. CONCLUSIONS: A new risk equation based on 6 routinely available laboratory tests facilitates identification of patients with CKD who are at high risk of progressing to KFRT.


Asunto(s)
Fallo Renal Crónico , Insuficiencia Renal Crónica , Insuficiencia Renal , Progresión de la Enfermedad , Tasa de Filtración Glomerular , Humanos , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/epidemiología
12.
EBioMedicine ; 74: 103734, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34875457

RESUMEN

BACKGROUND: L-kynurenine is a tryptophan-derived immunosuppressive metabolite and precursor to neurotoxic anthranilate and quinolinate. We evaluated the stereoisomer D-kynurenine as an immunosuppressive therapeutic which is hypothesized to produce less neurotoxic metabolites than L-kynurenine. METHODS: L-/D-kynurenine effects on human and murine T cell function were examined in vitro and in vivo (homeostatic proliferation, colitis, cardiac transplant). Kynurenine effects on T cell metabolism were interrogated using [13C] glucose, glutamine and palmitate tracing. Kynurenine was measured in tissues from human and murine tumours and kynurenine-fed mice. FINDINGS: We observed that 1 mM D-kynurenine inhibits T cell proliferation through apoptosis similar to L-kynurenine. Mechanistically, [13C]-tracing revealed that co-stimulated CD4+ T cells exposed to L-/D-kynurenine undergo increased ß-oxidation depleting fatty acids. Replenishing oleate/palmitate restored effector T cell viability. We administered dietary D-kynurenine reaching tissue kynurenine concentrations of 19 µM, which is close to human kidney (6 µM) and head and neck cancer (14 µM) but well below the 1 mM required for apoptosis. D-kynurenine protected Rag1-/- mice from autoimmune colitis in an aryl-hydrocarbon receptor dependent manner but did not attenuate more stringent immunological challenges such as antigen mismatched cardiac allograft rejection. INTERPRETATION: Our dietary kynurenine model achieved tissue concentrations at or above human cancer kynurenine and exhibited only limited immunosuppression. Sub-suppressive kynurenine concentrations in human cancers may limit the responsiveness to indoleamine 2,3-dioxygenase inhibition evaluated in clinical trials. FUNDING: The study was supported by the NIH, the Else Kröner-Fresenius-Foundation, Laffey McHugh foundation, and American Society of Nephrology.


Asunto(s)
Colitis/prevención & control , Ácidos Grasos/metabolismo , Proteínas de Homeodominio/genética , Inmunosupresores/administración & dosificación , Quinurenina/administración & dosificación , Melanoma Experimental/tratamiento farmacológico , Linfocitos T/citología , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Colitis/genética , Modelos Animales de Enfermedad , Femenino , Técnicas de Inactivación de Genes , Glucosa/metabolismo , Humanos , Inmunosupresores/farmacología , Quinurenina/farmacología , Masculino , Melanoma Experimental/inmunología , Ratones , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo
13.
J Am Soc Nephrol ; 32(9): 2315-2329, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34140400

RESUMEN

BACKGROUND: Polypharmacy is common among patients with CKD, but little is known about the urinary excretion of many drugs and their metabolites among patients with CKD. METHODS: To evaluate self-reported medication use in relation to urine drug metabolite levels in a large cohort of patients with CKD, the German Chronic Kidney Disease study, we ascertained self-reported use of 158 substances and 41 medication groups, and coded active ingredients according to the Anatomical Therapeutic Chemical Classification System. We used a nontargeted mass spectrometry-based approach to quantify metabolites in urine; calculated specificity, sensitivity, and accuracy of medication use and corresponding metabolite measurements; and used multivariable regression models to evaluate associations and prescription patterns. RESULTS: Among 4885 participants, there were 108 medication-drug metabolite pairs on the basis of reported medication use and 78 drug metabolites. Accuracy was excellent for measurements of 36 individual substances in which the unchanged drug was measured in urine (median, 98.5%; range, 61.1%-100%). For 66 pairs of substances and their related drug metabolites, median measurement-based specificity and sensitivity were 99.2% (range, 84.0%-100%) and 71.7% (range, 1.2%-100%), respectively. Commonly prescribed medications for hypertension and cardiovascular risk reduction-including angiotensin II receptor blockers, calcium channel blockers, and metoprolol-showed high sensitivity and specificity. Although self-reported use of prescribed analgesics (acetaminophen, ibuprofen) was <3% each, drug metabolite levels indicated higher usage (acetaminophen, 10%-26%; ibuprofen, 10%-18%). CONCLUSIONS: This comprehensive screen of associations between urine drug metabolite levels and self-reported medication use supports the use of pharmacometabolomics to assess medication adherence and prescription patterns in persons with CKD, and indicates under-reported use of medications available over the counter, such as analgesics.


Asunto(s)
Cumplimiento de la Medicación , Preparaciones Farmacéuticas/orina , Polifarmacia , Insuficiencia Renal Crónica/orina , Autoinforme , Anciano , Estudios de Cohortes , Femenino , Alemania , Humanos , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/terapia , Sensibilidad y Especificidad , Orina/química
14.
Cancers (Basel) ; 13(8)2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33916994

RESUMEN

In recent years, onco-metabolites like D-2-hydroxyglutarate, which is produced in isocitrate dehydrogenase-mutated tumors, have gained increasing interest. Here, we report a metabolite in human specimens that is closely related to 2-hydroxyglutarate: the intramolecular ester of 2-hydroxyglutarate, 2-hydroxyglutarate-γ-lactone. Using 13C5-L-glutamine tracer analysis, we showed that 2-hydroxyglutarate is the endogenous precursor of 2-hydroxyglutarate-lactone and that there is a high exchange between these two metabolites. Lactone formation does not depend on mutated isocitrate dehydrogenase, but its formation is most probably linked to transport processes across the cell membrane and favored at low environmental pH. Furthermore, human macrophages showed not only striking differences in uptake of 2-hydroxyglutarate and its lactone but also in the enantiospecific hydrolysis of the latter. Consequently, 2-hydroxyglutarate-lactone may play a critical role in the modulation of the tumor microenvironment.

15.
Brain ; 144(4): 1214-1229, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33871026

RESUMEN

Knowledge about converging disease mechanisms in the heterogeneous syndrome amyotrophic lateral sclerosis (ALS) is rare, but may lead to therapies effective in most ALS cases. Previously, we identified serum microRNAs downregulated in familial ALS, the majority of sporadic ALS patients, but also in presymptomatic mutation carriers. A 5-nucleotide sequence motif (GDCGG; D = G, A or U) was strongly enriched in these ALS-related microRNAs. We hypothesized that deregulation of protein(s) binding predominantly to this consensus motif was responsible for the ALS-linked microRNA fingerprint. Using microRNA pull-down assays combined with mass spectrometry followed by extensive biochemical validation, all members of the fragile X protein family, FMR1, FXR1 and FXR2, were identified to directly and predominantly interact with GDCGG microRNAs through their structurally disordered RGG/RG domains. Preferential association of this protein family with ALS-related microRNAs was confirmed by in vitro binding studies on a transcriptome-wide scale. Immunohistochemistry of lumbar spinal cord revealed aberrant expression level and aggregation of FXR1 and FXR2 in C9orf72- and FUS-linked familial ALS, but also patients with sporadic ALS. Further analysis of ALS autopsies and induced pluripotent stem cell-derived motor neurons with FUS mutations showed co-aggregation of FXR1 with FUS. Hence, our translational approach was able to take advantage of blood microRNAs to reveal CNS pathology, and suggests an involvement of the fragile X-related proteins in familial and sporadic ALS already at a presymptomatic stage. The findings may uncover disease mechanisms relevant to many patients with ALS. They furthermore underscore the systemic, extra-CNS aspect of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , MicroARNs/sangre , MicroARNs/genética , Proteínas de Unión al ARN/metabolismo , Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Humanos , Proteína FUS de Unión a ARN/genética
16.
Nat Commun ; 12(1): 1460, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674584

RESUMEN

Mitochondria are important regulators of macrophage polarisation. Here, we show that arginase-2 (Arg2) is a microRNA-155 (miR-155) and interleukin-10 (IL-10) regulated protein localized at the mitochondria in inflammatory macrophages, and is critical for IL-10-induced modulation of mitochondrial dynamics and oxidative respiration. Mechanistically, the catalytic activity and presence of Arg2 at the mitochondria is crucial for oxidative phosphorylation. We further show that Arg2 mediates this process by increasing the activity of complex II (succinate dehydrogenase). Moreover, Arg2 is essential for IL-10-mediated downregulation of the inflammatory mediators succinate, hypoxia inducible factor 1α (HIF-1α) and IL-1ß in vitro. Accordingly, HIF-1α and IL-1ß are highly expressed in an LPS-induced in vivo model of acute inflammation using Arg2-/- mice. These findings shed light on a new arm of IL-10-mediated metabolic regulation, working to resolve the inflammatory status of the cell.


Asunto(s)
Arginasa/metabolismo , Interleucina-10/metabolismo , Macrófagos/metabolismo , Mitocondrias/metabolismo , Animales , Arginasa/genética , Regulación hacia Abajo , Femenino , Interleucina-1beta/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados/genética , Mitocondrias/enzimología , Succinato Deshidrogenasa/metabolismo
17.
Eur J Immunol ; 51(1): 91-102, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32946110

RESUMEN

Cellular metabolism is dynamically regulated in NK cells and strongly influences their responses. Metabolic dysfunction is linked to defective NK cell responses in diseases such as obesity and cancer. The transcription factors, sterol regulatory element binding protein (SREBP) and cMyc, are crucial for controlling NK cell metabolic and functional responses, though the mechanisms involved are not fully understood. This study reveals a new role for SREBP in NK cells in supporting de novo polyamine synthesis through facilitating elevated cMyc expression. Polyamines have diverse roles and their de novo synthesis is required for NK cell glycolytic and oxidative metabolism and to support optimal NK cell effector functions. When NK cells with impaired SREBP activity were supplemented with exogenous polyamines, NK cell metabolic defects were not rescued but these NK cells displayed significant improvement in some effector functions. One role for polyamines is in the control of protein translation where spermidine supports the posttranslational hypusination of translation factor eIF5a. Pharmacological inhibition of hypusination also impacts upon NK cell metabolism and effector function. Considering recent evidence that cholesterol-rich tumor microenvironments inhibit SREBP activation and drive lymphocyte dysfunction, this study provides key mechanistic insight into this tumor-evasion strategy.


Asunto(s)
Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Poliaminas/metabolismo , Animales , Células Cultivadas , Femenino , Glucólisis , Células Asesinas Naturales/efectos de los fármacos , Lisina/análogos & derivados , Lisina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación Oxidativa , Factores de Iniciación de Péptidos/metabolismo , Poliaminas/farmacología , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión a los Elementos Reguladores de Esteroles/deficiencia , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo , Factor 5A Eucariótico de Iniciación de Traducción
18.
Cancers (Basel) ; 12(11)2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33212941

RESUMEN

Isocitrate dehydrogenase (IDH)-1 mutation is an important prognostic factor and a potential therapeutic target in glioma. Immunohistological and molecular diagnosis of IDH mutation status is invasive. To avoid tumor biopsy, dedicated spectroscopic techniques have been proposed to detect D-2-hydroxyglutarate (2-HG), the main metabolite of IDH, directly in vivo. However, these methods are technically challenging and not broadly available. Therefore, we explored the use of machine learning for the non-invasive, inexpensive and fast diagnosis of IDH status in standard 1H-magnetic resonance spectroscopy (1H-MRS). To this end, 30 of 34 consecutive patients with known or suspected glioma WHO grade II-IV were subjected to metabolic positron emission tomography (PET) imaging with O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) for optimized voxel placement in 1H-MRS. Routine 1H-magnetic resonance (1H-MR) spectra of tumor and contralateral healthy brain regions were acquired on a 3 Tesla magnetic resonance (3T-MR) scanner, prior to surgical tumor resection and molecular analysis of IDH status. Since 2-HG spectral signals were too overlapped for reliable discrimination of IDH mutated (IDHmut) and IDH wild-type (IDHwt) glioma, we used a nested cross-validation approach, whereby we trained a linear support vector machine (SVM) on the complete spectral information of the 1H-MRS data to predict IDH status. Using this approach, we predicted IDH status with an accuracy of 88.2%, a sensitivity of 95.5% (95% CI, 77.2-99.9%) and a specificity of 75.0% (95% CI, 42.9-94.5%), respectively. The area under the curve (AUC) amounted to 0.83. Subsequent ex vivo 1H-nuclear magnetic resonance (1H-NMR) measurements performed on metabolite extracts of resected tumor material (eight specimens) revealed myo-inositol (M-ins) and glycine (Gly) to be the major discriminators of IDH status. We conclude that our approach allows a reliable, non-invasive, fast and cost-effective prediction of IDH status in a standard clinical setting.

19.
Plast Reconstr Surg ; 146(6): 749e-758e, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33234959

RESUMEN

BACKGROUND: Lipofilling is one of the most often performed surgical procedures in plastic and reconstructive surgery. Lipoaspirates provide a ready source of stem cells and secreted factors that contribute to neoangiogenesis and fat graft survival. However, the regulations about the enrichment of these beneficial cells and factors are ambiguous. In this study, the authors tested whether a combination of centrifugation and homogenization allowed the enrichment of viable stem cells in lipoaspirates through the selective removal of tumescent solution, blood, and released lipids without significantly affecting the cell secretome. METHODS: Human lipoaspirate was harvested from six different patients using water jet-assisted liposuction. Lipoaspirate was homogenized by first centrifugation (3584 rpm for 2 minutes), shear strain (10 times intersyringe processing), and second centrifugation (3584 rpm for 2 minutes). Stem cell enrichment was shown by cell counting after stem cell isolation. Lipoaspirate from different processing steps (unprocessed, after first centrifugation, after homogenization, after second centrifugation) was incubated in serum-free cell culture medium for mass spectrometric analysis of secreted proteins. RESULTS: Lipoaspirate homogenization leads to a significant 2.6 ± 1.75-fold enrichment attributable to volume reduction without reducing the viability of the stem cells. Protein composition of the secretome did not change significantly after tissue homogenization. Considering the enrichment effects, there were no significant differences in the protein concentration of the 83 proteins found in all processing steps. CONCLUSIONS: Stem cells can be enriched mechanically without significantly affecting the composition of secreted proteins. Shear-assisted enrichment of lipoaspirate constitutes no substantial manipulation of the cells' secretome.


Asunto(s)
Tejido Adiposo/citología , Proteoma/metabolismo , Trasplante de Células Madre , Células Madre/metabolismo , Adulto , Anciano , Contorneado Corporal/métodos , Recuento de Células , Separación Celular/métodos , Centrifugación/efectos adversos , Medio de Cultivo Libre de Suero , Femenino , Supervivencia de Injerto/fisiología , Voluntarios Sanos , Humanos , Lipectomía/métodos , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Neovascularización Fisiológica/fisiología , Cultivo Primario de Células/métodos , Proteoma/análisis , Proteómica , Resistencia al Corte
20.
Cancers (Basel) ; 12(8)2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32756332

RESUMEN

BACKGROUND: The epidermal growth factor receptor (EGFR) signaling pathway is genetically activated in approximately 50% of glioblastomas (GBs). Its inhibition has been explored clinically but produced disappointing results, potentially due to metabolic effects that protect GB cells against nutrient deprivation and hypoxia. Here, we hypothesized that EGFR activation could disable metabolic adaptation and define a GB cell population sensitive to starvation. METHODS: Using genetically engineered GB cells to model different types of EGFR activation, we analyzed changes in metabolism and cell survival under conditions of the tumor microenvironment. RESULTS: We found that expression of mutant EGFRvIII as well as EGF stimulation of EGFR-overexpressing cells impaired physiological adaptation to starvation and rendered cells sensitive to hypoxia-induced cell death. This was preceded by adenosine triphosphate (ATP) depletion and an increase in glycolysis. Furthermore, EGFRvIII mutant cells had higher levels of mitochondrial superoxides potentially due to decreased metabolic flux into the serine synthesis pathway which was associated with a decrease in the NADPH/NADP+ ratio. CONCLUSIONS: The finding that EGFR activation renders GB cells susceptible to starvation could help to identify a subgroup of patients more likely to benefit from starvation-inducing therapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA