Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Life Sci Alliance ; 7(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631913

RESUMEN

The Helicobacter pylori Cag type IV secretion system (Cag T4SS) has an important role in the pathogenesis of gastric cancer. The Cag T4SS outer membrane core complex (OMCC) is organized into three regions: a 14-fold symmetric outer membrane cap (OMC) composed of CagY, CagX, CagT, CagM, and Cag3; a 17-fold symmetric periplasmic ring (PR) composed of CagY and CagX; and a stalk with unknown composition. We investigated how CagT, CagM, and a conserved antenna projection (AP) region of CagY contribute to the structural organization of the OMCC. Single-particle cryo-EM analyses showed that complexes purified from ΔcagT or ΔcagM mutants no longer had organized OMCs, but the PRs remained structured. OMCCs purified from a CagY antenna projection mutant (CagY∆AP) were structurally similar to WT OMCCs, except for the absence of the α-helical antenna projection. These results indicate that CagY and CagX are sufficient for maintaining a stable PR, but the organization of the OMC requires CagY, CagX, CagM, and CagT. Our results highlight an unexpected structural independence of two major subdomains of the Cag T4SS OMCC.


Asunto(s)
Helicobacter pylori , Sistemas de Secreción Tipo IV/química , Periplasma
2.
J Mol Biol ; 436(4): 168432, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38161000

RESUMEN

Helicobacter pylori colonizes the stomach in about half of the human population, leading to an increased risk of peptic ulcer disease and gastric cancer. H. pylori secretes an 88 kDa VacA toxin that contributes to pathogenesis. VacA assembles into oligomeric complexes in solution and forms anion-selective channels in cell membranes. Cryo-electron microscopy (cryo-EM) analyses of VacA oligomers in solution provided insights into VacA oligomerization but failed to reveal the structure of the hydrophobic N-terminal region predicted to be a pore-forming domain. In this study, we incubated VacA with liposomes and used single particle cryo-EM to analyze detergent-extracted VacA oligomers. A 3D structure of detergent-solubilized VacA hexamers revealed the presence of six α-helices extending from the center of the oligomers, a feature not observed in previous studies of water-soluble VacA oligomers. Cryo-electron tomography analysis and 2D averages of VacA associated with liposomes confirmed that central regions of the membrane-associated VacA oligomers can insert into the lipid bilayer. However, insertion is heterogenous, with some membrane-associated oligomers appearing only partially inserted and others sitting on top of the bilayer. These studies indicate that VacA undergoes a conformational change when contacting the membrane and reveal an α-helical region positioned to extend into the membrane. Although the reported VacA 3D structure does not represent a selective anion channel, our combined single particle 3D analysis, cryo-electron tomography, and modeling allow us to propose a model for the structural organization of the VacA N-terminus in the context of a hexamer as it inserts into the membrane.


Asunto(s)
Proteínas Bacterianas , Helicobacter pylori , Toxinas Biológicas , Canales Aniónicos Dependientes del Voltaje , Humanos , Proteínas Bacterianas/química , Microscopía por Crioelectrón/métodos , Detergentes , Helicobacter pylori/química , Liposomas/química , Toxinas Biológicas/química , Canales Aniónicos Dependientes del Voltaje/química , Multimerización de Proteína
3.
Biochemistry ; 62(11): 1725-1734, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37130292

RESUMEN

Dicer is an RNase III enzyme that is responsible for the maturation of small RNAs such as microRNAs. As Dicer's cleavage products play key roles in promoting cellular homeostasis through the fine-tuning of gene expression, dysregulation of Dicer activity can lead to several human diseases, including cancers. Mutations in Dicer have been found to induce tumorigenesis and lead to the development of a rare pleiotropic tumor predisposition syndrome found in children and young adults called DICER1 syndrome. These patients harbor germline and somatic mutations in Dicer that lead to defective microRNA processing and activity. While most mutations occur within Dicer's catalytic RNase III domains, alterations within the Platform-PAZ (Piwi-Argonaute-Zwille) domain also cause loss of microRNA production. Using a combination of in vitro biochemical and cellular studies, we characterized the effect of disease-relevant Platform-PAZ-associated mutations on the processing of a well-studied oncogenic microRNA, pre-microRNA-21. We then compared these results to those of a representative from another Dicer substrate class, the small nucleolar RNA, snord37. From this analysis, we provide evidence that mutations within the Platform-PAZ domain result in differential impacts on RNA binding and processing, adding new insights into the complexities of Dicer processing of small RNA substrates.


Asunto(s)
MicroARNs , ARN Nucleolar Pequeño , Niño , Humanos , ARN Nucleolar Pequeño/genética , Ribonucleasa III/química , MicroARNs/química , Mutación , ARN Helicasas DEAD-box/genética
4.
J Biol Chem ; 299(4): 104574, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36870682

RESUMEN

Caveolin-1 (CAV1) is a membrane-sculpting protein that oligomerizes to generate flask-shaped invaginations of the plasma membrane known as caveolae. Mutations in CAV1 have been linked to multiple diseases in humans. Such mutations often interfere with oligomerization and the intracellular trafficking processes required for successful caveolae assembly, but the molecular mechanisms underlying these defects have not been structurally explained. Here, we investigate how a disease-associated mutation in one of the most highly conserved residues in CAV1, P132L, affects CAV1 structure and oligomerization. We show that P132 is positioned at a major site of protomer-protomer interactions within the CAV1 complex, providing a structural explanation for why the mutant protein fails to homo-oligomerize correctly. Using a combination of computational, structural, biochemical, and cell biological approaches, we find that despite its homo-oligomerization defects P132L is capable of forming mixed hetero-oligomeric complexes with WT CAV1 and that these complexes can be incorporated into caveolae. These findings provide insights into the fundamental mechanisms that control the formation of homo- and hetero-oligomers of caveolins that are essential for caveolae biogenesis, as well as how these processes are disrupted in human disease.


Asunto(s)
Caveolina 1 , Caveolinas , Enfermedad , Humanos , Caveolas/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Caveolinas/metabolismo , Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Mutación , Subunidades de Proteína/metabolismo , Enfermedad/genética
5.
Infect Immun ; 89(12): e0034821, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34543122

RESUMEN

Helicobacter pylori VacA is a secreted toxin that assembles into water-soluble oligomeric structures and forms anion-selective membrane channels. Acidification of purified VacA enhances its activity in cell culture assays. Sites of protomer-protomer contact within VacA oligomers have been identified by cryoelectron microscopy, and in the current study, we validated several of these interactions by chemical cross-linking and mass spectrometry. We then mutated amino acids at these contact sites and analyzed the effects of the alterations on VacA oligomerization and activity. VacA proteins with amino acid charge reversals at interprotomer contact sites retained the capacity to assemble into water-soluble oligomers and retained cell-vacuolating activity. Introduction of paired cysteine substitutions at these sites resulted in formation of disulfide bonds between adjacent protomers. Negative-stain electron microscopy and single-particle two-dimensional class analysis revealed that wild-type VacA oligomers disassemble when exposed to acidic pH, whereas the mutant proteins with paired cysteine substitutions retain an oligomeric state at acidic pH. Acid-activated wild-type VacA caused vacuolation of cultured cells, whereas acid-activated mutant proteins with paired cysteine substitutions lacked cell-vacuolating activity. Treatment of these mutant proteins with both low pH and a reducing agent resulted in VacA binding to cells, VacA internalization, and cell vacuolation. Internalization of a nonoligomerizing mutant form of VacA by host cells was detected without a requirement for acid activation. Collectively, these results enhance our understanding of the molecular interactions required for VacA oligomerization and support a model in which toxin activity depends on interactions of monomeric VacA with host cells.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Conformación Proteica , Multimerización de Proteína , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad
6.
Elife ; 92020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32876048

RESUMEN

The pathogenesis of Helicobacter pylori-associated gastric cancer is dependent on delivery of CagA into host cells through a type IV secretion system (T4SS). The H. pylori Cag T4SS includes a large membrane-spanning core complex containing five proteins, organized into an outer membrane cap (OMC), a periplasmic ring (PR) and a stalk. Here, we report cryo-EM reconstructions of a core complex lacking Cag3 and an improved map of the wild-type complex. We define the structures of two unique species-specific components (Cag3 and CagM) and show that Cag3 is structurally similar to CagT. Unexpectedly, components of the OMC are organized in a 1:1:2:2:5 molar ratio (CagY:CagX:CagT:CagM:Cag3). CagX and CagY are components of both the OMC and the PR and bridge the symmetry mismatch between these regions. These results reveal that assembly of the H. pylori T4SS core complex is dependent on incorporation of interwoven species-specific components.


Asunto(s)
Proteínas Bacterianas/ultraestructura , Helicobacter pylori/química , Sistemas de Secreción Tipo IV/ultraestructura , Proteínas Bacterianas/química , Proteínas Bacterianas/clasificación , Microscopía por Crioelectrón , Modelos Moleculares , Conformación Proteica , Especificidad de la Especie , Sistemas de Secreción Tipo IV/química , Sistemas de Secreción Tipo IV/clasificación
7.
Trends Microbiol ; 28(8): 682-695, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32451226

RESUMEN

Colonization of the human stomach with Helicobacter pylori strains containing the cag pathogenicity island is a risk factor for development of gastric cancer. The cag pathogenicity island contains genes encoding a secreted effector protein (CagA) and components of a type IV secretion system (Cag T4SS). The molecular architecture of the H. pylori Cag T4SS is substantially more complex than that of prototype T4SSs in other bacterial species. In this review, we discuss recent discoveries pertaining to the structure and function of the Cag T4SS and its role in gastric cancer pathogenesis.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Islas Genómicas/genética , Infecciones por Helicobacter/patología , Helicobacter pylori/metabolismo , Sistemas de Secreción Tipo IV/fisiología , Animales , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Helicobacter pylori/crecimiento & desarrollo , Helicobacter pylori/patogenicidad , Humanos , Ratones , Conformación Proteica , Estómago/microbiología , Estómago/patología , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/patología
8.
Elife ; 82019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31210639

RESUMEN

Bacterial type IV secretion systems (T4SSs) are molecular machines that can mediate interbacterial DNA transfer through conjugation and delivery of effector molecules into host cells. The Helicobacter pylori Cag T4SS translocates CagA, a bacterial oncoprotein, into gastric cells, contributing to gastric cancer pathogenesis. We report the structure of a membrane-spanning Cag T4SS assembly, which we describe as three sub-assemblies: a 14-fold symmetric outer membrane core complex (OMCC), 17-fold symmetric periplasmic ring complex (PRC), and central stalk. Features that differ markedly from those of prototypical T4SSs include an expanded OMCC and unexpected symmetry mismatch between the OMCC and PRC. This structure is one of the largest bacterial secretion system assemblies ever reported and illustrates the remarkable structural diversity that exists among bacterial T4SSs.


Asunto(s)
Helicobacter pylori/metabolismo , Sistemas de Secreción Tipo IV/química , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/ultraestructura , Modelos Moleculares , Sistemas de Secreción Tipo IV/ultraestructura
9.
J Mol Biol ; 431(10): 1956-1965, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-30954575

RESUMEN

Helicobacter pylori colonizes the human stomach and contributes to the development of gastric cancer and peptic ulcer disease. H. pylori secretes a pore-forming toxin called vacuolating cytotoxin A (VacA), which contains two domains (p33 and p55) and assembles into oligomeric structures. Using single-particle cryo-electron microscopy, we have determined low-resolution structures of a VacA dodecamer and heptamer, as well as a 3.8-Å structure of the VacA hexamer. These analyses show that VacA p88 consists predominantly of a right-handed beta-helix that extends from the p55 domain into the p33 domain. We map the regions of p33 and p55 involved in hexamer assembly, model how interactions between protomers support heptamer formation, and identify surfaces of VacA that likely contact membrane. This work provides structural insights into the process of VacA oligomerization and identifies regions of VacA protomers that are predicted to contact the host cell surface during channel formation.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/ultraestructura , Helicobacter pylori/química , Microscopía por Crioelectrón/métodos , Infecciones por Helicobacter/microbiología , Helicobacter pylori/ultraestructura , Humanos , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína
10.
Infect Immun ; 87(4)2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30692181

RESUMEN

Helicobacter pylori VacA is a secreted pore-forming toxin that induces cell vacuolation in vitro and contributes to the pathogenesis of gastric cancer and peptic ulcer disease. We observed that purified VacA has relatively little effect on the viability of AGS gastric epithelial cells, but the presence of exogenous weak bases such as ammonium chloride (NH4Cl) enhances the susceptibility of these cells to VacA-induced vacuolation and cell death. Therefore, we tested the hypothesis that NH4Cl augments VacA toxicity by altering the intracellular trafficking of VacA or inhibiting intracellular VacA degradation. We observed VacA colocalization with LAMP1- and LC3-positive vesicles in both the presence and absence of NH4Cl, indicating that NH4Cl does not alter VacA trafficking to lysosomes or autophagosomes. Conversely, we found that supplemental NH4Cl significantly increases the intracellular stability of VacA. By conducting experiments using chemical inhibitors, stable ATG5 knockdown cell lines, and ATG16L1 knockout cells (generated using CRISPR/Cas9), we show that VacA degradation is independent of autophagy and proteasome activity but dependent on lysosomal acidification. We conclude that weak bases like ammonia, potentially generated during H. pylori infection by urease and other enzymes, enhance VacA toxicity by inhibiting toxin degradation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Células Epiteliales/citología , Mucosa Gástrica/citología , Infecciones por Helicobacter/microbiología , Helicobacter pylori/metabolismo , Autofagia/efectos de los fármacos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/toxicidad , Línea Celular , Supervivencia Celular , Células Epiteliales/efectos de los fármacos , Células Epiteliales/microbiología , Mucosa Gástrica/efectos de los fármacos , Mucosa Gástrica/microbiología , Helicobacter pylori/química , Helicobacter pylori/genética , Humanos , Concentración de Iones de Hidrógeno , Muramidasa/química , Muramidasa/metabolismo , Estabilidad Proteica , Transporte de Proteínas , Proteolisis
11.
Infect Immun ; 86(5)2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29531133

RESUMEN

Helicobacter pylori, a Gram-negative bacterium, is a well-known risk factor for gastric cancer. H. pylori vacuolating cytotoxin A (VacA) is a secreted pore-forming toxin that induces a wide range of cellular responses. Like many other bacterial toxins, VacA has been hypothesized to utilize lipid rafts to gain entry into host cells. Here, we used giant plasma membrane vesicles (GPMVs) as a model system to understand the preferential partitioning of VacA into lipid rafts. We show that a wild-type (WT) toxin predominantly associates with the raft phase. Acid activation of VacA enhances binding of the toxin to GPMVs but is not required for raft partitioning. VacA mutant proteins with alterations at the amino terminus (resulting in impaired membrane channel formation) and a nonoligomerizing VacA mutant protein retain the ability to preferentially associate with lipid rafts. Consistent with these results, the isolated VacA p55 domain was capable of binding to lipid rafts. We conclude that the affinity of VacA for rafts is independent of its capacity to oligomerize or form membrane channels.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Helicobacter pylori/metabolismo , Helicobacter pylori/patogenicidad , Microdominios de Membrana/metabolismo , Neoplasias Gástricas/patología , Vacuolas/metabolismo , Interacciones Huésped-Patógeno
12.
PLoS Pathog ; 14(2): e1006837, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29470533

RESUMEN

Respiratory syncytial virus (RSV) is a major human pathogen that infects the majority of children by two years of age. The RSV fusion (F) protein is a primary target of human antibodies, and it has several antigenic regions capable of inducing neutralizing antibodies. Antigenic site IV is preserved in both the pre-fusion and post-fusion conformations of RSV F. Antibodies to antigenic site IV have been described that bind and neutralize both RSV and human metapneumovirus (hMPV). To explore the diversity of binding modes at antigenic site IV, we generated a panel of four new human monoclonal antibodies (mAbs) and competition-binding suggested the mAbs bind at antigenic site IV. Mutagenesis experiments revealed that binding and neutralization of two mAbs (3M3 and 6F18) depended on arginine (R) residue R429. We discovered two R429-independent mAbs (17E10 and 2N6) at this site that neutralized an RSV R429A mutant strain, and one of these mAbs (17E10) neutralized both RSV and hMPV. To determine the mechanism of cross-reactivity, we performed competition-binding, recombinant protein mutagenesis, peptide binding, and electron microscopy experiments. It was determined that the human cross-reactive mAb 17E10 binds to RSV F with a binding pose similar to 101F, which may be indicative of cross-reactivity with hMPV F. The data presented provide new concepts in RSV immune recognition and vaccine design, as we describe the novel idea that binding pose may influence mAb cross-reactivity between RSV and hMPV. Characterization of the site IV epitope bound by human antibodies may inform the design of a pan-Pneumovirus vaccine.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , Epítopos/metabolismo , Virus Sincitial Respiratorio Humano/metabolismo , Proteínas Virales de Fusión/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Anticuerpos Monoclonales/química , Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/química , Especificidad de Anticuerpos , Sitios de Unión de Anticuerpos , Unión Competitiva , Reacciones Cruzadas , Mapeo Epitopo , Humanos , Cinética , Metapneumovirus/inmunología , Metapneumovirus/metabolismo , Microscopía Electrónica , Mutación , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Virus Sincitial Respiratorio Humano/inmunología , Proteínas Virales de Fusión/antagonistas & inhibidores , Proteínas Virales de Fusión/genética
13.
Sci Adv ; 3(7): e1700220, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28695207

RESUMEN

Peripheral myelin protein 22 (PMP22) is highly expressed in myelinating Schwann cells of the peripheral nervous system. PMP22 genetic alterations cause the most common forms of Charcot-Marie-Tooth disease (CMTD), which is characterized by severe dysmyelination in the peripheral nerves. However, the functions of PMP22 in Schwann cell membranes remain unclear. We demonstrate that reconstitution of purified PMP22 into lipid vesicles results in the formation of compressed and cylindrically wrapped protein-lipid vesicles that share common organizational traits with compact myelin of peripheral nerves in vivo. The formation of these myelin-like assemblies depends on the lipid-to-PMP22 ratio, as well as on the PMP22 extracellular loops. Formation of the myelin-like assemblies is disrupted by a CMTD-causing mutation. This study provides both a biochemical assay for PMP22 function and evidence that PMP22 directly contributes to membrane organization in compact myelin.


Asunto(s)
Membrana Celular/química , Membrana Celular/metabolismo , Proteínas de la Mielina/metabolismo , Membrana Celular/ultraestructura , Enfermedad de Charcot-Marie-Tooth , Cisteína/química , Cisteína/metabolismo , Humanos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Lípidos/química , Liposomas/química , Liposomas/ultraestructura , Mutación , Proteínas de la Mielina/química , Proteínas de la Mielina/genética , Proteínas Recombinantes
14.
Proc Natl Acad Sci U S A ; 113(44): E6849-E6858, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27791117

RESUMEN

Palivizumab was the first antiviral monoclonal antibody (mAb) approved for therapeutic use in humans, and remains a prophylactic treatment for infants at risk for severe disease because of respiratory syncytial virus (RSV). Palivizumab is an engineered humanized version of a murine mAb targeting antigenic site II of the RSV fusion (F) protein, a key target in vaccine development. There are limited reported naturally occurring human mAbs to site II; therefore, the structural basis for human antibody recognition of this major antigenic site is poorly understood. Here, we describe a nonneutralizing class of site II-specific mAbs that competed for binding with palivizumab to postfusion RSV F protein. We also describe two classes of site II-specific neutralizing mAbs, one of which escaped competition with nonneutralizing mAbs. An X-ray crystal structure of the neutralizing mAb 14N4 in complex with F protein showed that the binding angle at which human neutralizing mAbs interact with antigenic site II determines whether or not nonneutralizing antibodies compete with their binding. Fine-mapping studies determined that nonneutralizing mAbs that interfere with binding of neutralizing mAbs recognize site II with a pose that facilitates binding to an epitope containing F surface residues on a neighboring protomer. Neutralizing antibodies, like motavizumab and a new mAb designated 3J20 that escape interference by the inhibiting mAbs, avoid such contact by binding at an angle that is shifted away from the nonneutralizing site. Furthermore, binding to rationally and computationally designed site II helix-loop-helix epitope-scaffold vaccines distinguished neutralizing from nonneutralizing site II antibodies.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Virus Sincitial Respiratorio Humano/inmunología , Proteínas Virales de Fusión/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales Humanizados/inmunología , Anticuerpos Neutralizantes/química , Antivirales/farmacología , Línea Celular , Cristalografía por Rayos X , Mapeo Epitopo , Epítopos/inmunología , Humanos , Ratones , Mutagénesis , Palivizumab/farmacología , Vacunas contra Virus Sincitial Respiratorio/química , Vacunas contra Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/efectos de los fármacos
15.
Infect Immun ; 84(9): 2662-70, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27382020

RESUMEN

Helicobacter pylori secretes a pore-forming VacA toxin that has structural features and activities substantially different from those of other known bacterial toxins. VacA can assemble into multiple types of water-soluble flower-shaped oligomeric structures, and most VacA activities are dependent on its capacity to oligomerize. The 88-kDa secreted VacA protein can undergo limited proteolysis to yield two domains, designated p33 and p55. The p33 domain is required for membrane channel formation and intracellular toxic activities, and the p55 domain has an important role in mediating VacA binding to cells. Previous studies showed that the p55 domain has a predominantly ß-helical structure, but no structural data are available for the p33 domain. We report here the purification and analysis of a nonoligomerizing mutant form of VacA secreted by H. pylori The nonoligomerizing 88-kDa mutant protein retains the capacity to enter host cells but lacks detectable toxic activity. Analysis of crystals formed by the monomeric protein reveals that the ß-helical structure of the p55 domain extends into the C-terminal portion of p33. Fitting the p88 structural model into an electron microscopy map of hexamers formed by wild-type VacA (predicted to be structurally similar to VacA membrane channels) reveals that p55 and the ß-helical segment of p33 localize to peripheral arms but do not occupy the central region of the hexamers. We propose that the amino-terminal portion of p33 is unstructured when VacA is in a monomeric form and that it undergoes a conformational change during oligomer assembly.


Asunto(s)
Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Helicobacter pylori/genética , Mutación/genética , Dominios Proteicos/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Línea Celular Tumoral , Células HeLa , Helicobacter pylori/metabolismo , Humanos , Canales Iónicos/genética , Canales Iónicos/metabolismo , Microscopía Electrónica/métodos
16.
Mol Microbiol ; 102(1): 22-36, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27309820

RESUMEN

Helicobacter pylori colonizes the human stomach and is a potential cause of peptic ulceration or gastric adenocarcinoma. H. pylori secretes a pore-forming toxin known as vacuolating cytotoxin A (VacA). The 88 kDa secreted VacA protein, composed of an N-terminal p33 domain and a C-terminal p55 domain, assembles into water-soluble oligomers. The structural organization of membrane-bound VacA has not been characterized in any detail and the role(s) of specific VacA domains in membrane binding and insertion are unclear. We show that membrane-bound VacA organizes into hexameric oligomers. Comparison of the two-dimensional averages of membrane-bound and soluble VacA hexamers generated using single particle electron microscopy reveals a structural difference in the central region of the oligomers (corresponding to the p33 domain), suggesting that membrane association triggers a structural change in the p33 domain. Analyses of the isolated p55 domain and VacA variants demonstrate that while the p55 domain can bind membranes, the p33 domain is required for membrane insertion. Surprisingly, neither VacA oligomerization nor the presence of putative transmembrane GXXXG repeats in the p33 domain is required for membrane insertion. These findings provide new insights into the process by which VacA binds and inserts into the lipid bilayer to form membrane channels.


Asunto(s)
Proteínas Bacterianas/metabolismo , Helicobacter pylori/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Citotoxinas/metabolismo , Células HeLa , Helicobacter pylori/genética , Humanos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/metabolismo , Conformación Proteica , Dominios Proteicos , Relación Estructura-Actividad , Vacuolas/metabolismo
17.
Toxins (Basel) ; 8(6)2016 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-27271669

RESUMEN

The VacA toxin secreted by Helicobacter pylori enhances the ability of the bacteria to colonize the stomach and contributes to the pathogenesis of gastric adenocarcinoma and peptic ulcer disease. The amino acid sequence and structure of VacA are unrelated to corresponding features of other known bacterial toxins. VacA is classified as a pore-forming toxin, and many of its effects on host cells are attributed to formation of channels in intracellular sites. The most extensively studied VacA activity is its capacity to stimulate vacuole formation, but the toxin has many additional effects on host cells. Multiple cell types are susceptible to VacA, including gastric epithelial cells, parietal cells, T cells, and other types of immune cells. This review focuses on the wide range of VacA actions that are detectable in vitro, as well as actions of VacA in vivo that are relevant for H. pylori colonization of the stomach and development of gastric disease.


Asunto(s)
Proteínas Bacterianas , Toxinas Bacterianas , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/toxicidad , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/toxicidad , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Humanos , Canales Iónicos/metabolismo , Conformación Proteica , Transcripción Genética
18.
mBio ; 7(1): e02001-15, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26758182

RESUMEN

UNLABELLED: Bacterial type IV secretion systems (T4SSs) can function to export or import DNA, and can deliver effector proteins into a wide range of target cells. Relatively little is known about the structural organization of T4SSs that secrete effector proteins. In this report, we describe the isolation and analysis of a membrane-spanning core complex from the Helicobacter pylori cag T4SS, which has an important role in the pathogenesis of gastric cancer. We show that this complex contains five H. pylori proteins, CagM, CagT, Cag3, CagX, and CagY, each of which is required for cag T4SS activity. CagX and CagY are orthologous to the VirB9 and VirB10 components of T4SSs in other bacterial species, and the other three Cag proteins are unique to H. pylori. Negative stain single-particle electron microscopy revealed complexes 41 nm in diameter, characterized by a 19-nm-diameter central ring linked to an outer ring by spoke-like linkers. Incomplete complexes formed by Δcag3 or ΔcagT mutants retain the 19-nm-diameter ring but lack an organized outer ring. Immunogold labeling studies confirm that Cag3 is a peripheral component of the complex. The cag T4SS core complex has an overall diameter and structural organization that differ considerably from the corresponding features of conjugative T4SSs. These results highlight specialized features of the H. pylori cag T4SS that are optimized for function in the human gastric mucosal environment. IMPORTANCE: Type IV secretion systems (T4SSs) are versatile macromolecular machines that are present in many bacterial species. In this study, we investigated a T4SS found in the bacterium Helicobacter pylori. H. pylori is an important cause of stomach cancer, and the H. pylori T4SS contributes to cancer pathogenesis by mediating entry of CagA (an effector protein regarded as a "bacterial oncoprotein") into gastric epithelial cells. We isolated and analyzed the membrane-spanning core complex of the H. pylori T4SS and showed that it contains unique proteins unrelated to components of T4SSs in other bacterial species. These results constitute the first structural analysis of the core complex from this important secretion system.


Asunto(s)
Helicobacter pylori/química , Helicobacter pylori/genética , Sustancias Macromoleculares/ultraestructura , Sistemas de Secreción Tipo IV/genética , Sistemas de Secreción Tipo IV/ultraestructura , Humanos , Inmunohistoquímica , Microscopía Electrónica
19.
EMBO Rep ; 16(3): 379-86, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25600116

RESUMEN

Germ cells give rise to all cell lineages in the next-generation and are responsible for the continuity of life. In a variety of organisms, germ cells and stem cells contain large ribonucleoprotein granules. Although these particles were discovered more than 100 years ago, their assembly and functions are not well understood. Here we report that glycolytic enzymes are components of these granules in Drosophila germ cells and both their mRNAs and the enzymes themselves are enriched in germ cells. We show that these enzymes are specifically required for germ cell development and that they protect their genomes from transposable elements, providing the first link between metabolism and transposon silencing. We further demonstrate that in the granules, glycolytic enzymes associate with the evolutionarily conserved Tudor protein. Our biochemical and single-particle EM structural analyses of purified Tudor show a flexible molecule and suggest a mechanism for the recruitment of glycolytic enzymes to the granules. Our data indicate that germ cells, similarly to stem cells and tumor cells, might prefer to produce energy through the glycolytic pathway, thus linking a particular metabolism to pluripotency.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Elementos Transponibles de ADN/fisiología , Proteínas de Drosophila/metabolismo , Drosophila/enzimología , Células Germinativas/fisiología , Proteínas de Transporte de Membrana/metabolismo , Ribonucleoproteínas/metabolismo , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Drosophila/fisiología , Glucólisis , MicroARNs/genética , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
20.
J Mol Biol ; 425(3): 524-35, 2013 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-23178866

RESUMEN

Helicobacter pylori is a Gram-negative bacterium that colonizes the human stomach and contributes to peptic ulceration and gastric adenocarcinoma. H. pylori secretes a pore-forming exotoxin known as vacuolating toxin (VacA). VacA contains two distinct domains, designated p33 and p55, and assembles into large "snowflake"-shaped oligomers. Thus far, no structural data are available for the p33 domain, which is essential for membrane channel formation. Using single-particle electron microscopy and the random conical tilt approach, we have determined the three-dimensional structures of six VacA oligomeric conformations at ~15-Å resolution. The p55 domain, composed primarily of ß-helical structures, localizes to the peripheral arms, while the p33 domain consists of two globular densities that localize within the center of the complexes. By fitting the VacA p55 crystal structure into the electron microscopy densities, we have mapped inter-VacA interactions that support oligomerization. In addition, we have examined VacA variants/mutants that differ from wild-type (WT) VacA in toxin activity and/or oligomeric structural features. Oligomers formed by VacA∆6-27, a mutant that fails to form membrane channels, lack an organized p33 central core. Mixed oligomers containing both WT and VacA∆6-27 subunits also lack an organized core. Oligomers formed by a VacA s2m1 chimera (which lacks cell-vacuolating activity) and VacAΔ301-328 (which retains vacuolating activity) each contain p33 central cores similar to those of WT oligomers. By providing the most detailed view of the VacA structure to date, these data offer new insights into the toxin's channel-forming component and the intermolecular interactions that underlie oligomeric assembly.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Multimerización de Proteína , Microscopía Electrónica/métodos , Modelos Moleculares , Mapeo de Interacción de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA