Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cell Stem Cell ; 20(5): 609-620.e6, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28343984

RESUMEN

Organ fitness depends on appropriate maintenance of stem cell populations, and aberrations in functional stem cell numbers are associated with malignancies and aging. Symmetrical division is the best characterized mechanism of stem cell replacement, but other mechanisms could also be deployed, particularly in situations of high stress. Here, we show that after severe depletion, intestinal stem cells (ISCs) in the Drosophila midgut are replaced by spindle-independent ploidy reduction of cells in the enterocyte lineage through a process known as amitosis. Amitosis is also induced by the functional loss of ISCs coupled with tissue demand and in aging flies, underscoring the generality of this mechanism. However, we also found that random homologous chromosome segregation during ploidy reduction can expose deleterious mutations through loss of heterozygosity. Together, our results highlight amitosis as an unappreciated mechanism for restoring stem cell homeostasis, but one with some associated risk in animals carrying mutations.


Asunto(s)
Intestinos/citología , Poliploidía , Células Madre/citología , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Drosophila , Enterocitos/citología , Femenino , Pérdida de Heterocigocidad/genética , Pérdida de Heterocigocidad/fisiología , Mutación/genética
2.
J Cell Biol ; 201(6): 945-61, 2013 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-23733344

RESUMEN

Although much is known about injury-induced signals that increase rates of Drosophila melanogaster midgut intestinal stem cell (ISC) proliferation, it is largely unknown how ISC activity returns to quiescence after injury. In this paper, we show that the bone morphogenetic protein (BMP) signaling pathway has dual functions during midgut homeostasis. Constitutive BMP signaling pathway activation in the middle midgut mediated regional specification by promoting copper cell differentiation. In the anterior and posterior midgut, injury-induced BMP signaling acted autonomously in ISCs to limit proliferation and stem cell number after injury. Loss of BMP signaling pathway members in the midgut epithelium or loss of the BMP signaling ligand decapentaplegic from visceral muscle resulted in phenotypes similar to those described for juvenile polyposis syndrome, a human intestinal tumor caused by mutations in BMP signaling pathway components. Our data establish a new link between injury and hyperplasia and may provide insight into how BMP signaling mutations drive formation of human intestinal cancers.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Drosophila melanogaster/metabolismo , Mucosa Intestinal/metabolismo , Transducción de Señal/fisiología , Células Madre/metabolismo , Animales , Animales Modificados Genéticamente , Proliferación Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Receptores ErbB/metabolismo , Genes Reporteros , Homeostasis/fisiología , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/lesiones , Neoplasias Intestinales/metabolismo , Neoplasias Intestinales/patología , Intestinos/citología , Intestinos/lesiones , Células Madre/citología , Regulación hacia Arriba/fisiología
3.
J Insect Physiol ; 57(4): 487-93, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21277309

RESUMEN

Cell renewal continuously replaces dead or dying cells in organs such as human and insect intestinal (midgut) epithelia; in insects, control of self-renewal determines insects' responses to any of the myriad pathogens and parasites of medical and agricultural importance that enter and cross their midgut epithelia. Regenerative cells occur in the midgut epithelia of many, if not all, insects and are probably derived from a distinctive population of stem cells. The control of proliferation and differentiation of these midgut regenerative cells is assumed to be regulated by an environment of adjacent cells that is referred to as a regenerative cell niche. An antibody to fasciclin II marks cell surfaces of tracheal regenerative cells associated with rapidly growing midgut epithelia. Tracheal regenerative cells and their neighboring midgut regenerative cells proliferate and differentiate in concert during the coordinated growth of the midgut and its associated muscles, nerves and tracheal cells.


Asunto(s)
Diferenciación Celular , Células Epiteliales/citología , Manduca/citología , Animales , Intestinos/citología , Intestinos/embriología , Larva/citología , Larva/crecimiento & desarrollo , Manduca/embriología , Tráquea/citología , Tráquea/embriología
4.
Science ; 327(5962): 210-3, 2010 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-20056890

RESUMEN

Stem cell niches are locations where stem cells reside and self-renew. Although studies have shown how niches maintain stem cell fate during tissue homeostasis, less is known about their roles in establishing stem cells. The adult Drosophila midgut is maintained by intestinal stem cells (ISCs); however, how they are established is unknown. Here, we show that an ISC progenitor generates a niche cell via Notch signaling. This niche uses the bone morphogenetic protein 2/4 homolog, decapentaplegic, to allow progenitors to divide in an undifferentiated state and subsequently breaks down and dies, resulting in the specification of ISCs in the adult midgut. Our results demonstrate a paradigm for stem cell-niche biology, where progenitors generate transient niches that determine stem cell fate and may give insights into stem cell specification in other tissues.


Asunto(s)
Células Madre Adultas/citología , Drosophila/citología , Células Epiteliales/citología , Nicho de Células Madre/fisiología , Células Madre Adultas/fisiología , Animales , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Enterocitos/citología , Intestinos/citología , Intestinos/crecimiento & desarrollo , Larva/citología , Larva/crecimiento & desarrollo , Larva/metabolismo , Metamorfosis Biológica , Organogénesis , Receptores Notch/metabolismo , Transducción de Señal
5.
Nature ; 439(7075): 470-4, 2006 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-16340960

RESUMEN

Vertebrate and invertebrate digestive systems show extensive similarities in their development, cellular makeup and genetic control. The Drosophila midgut is typical: enterocytes make up the majority of the intestinal epithelial monolayer, but are interspersed with hormone-producing enteroendocrine cells. Human (and mouse) intestinal cells are continuously replenished by stem cells, the misregulation of which may underlie some common digestive diseases and cancer. In contrast, stem cells have not been described in the intestines of flies, and Drosophila intestinal cells have been thought to be relatively stable. Here we use lineage labelling to show that adult Drosophila posterior midgut cells are continuously replenished by a distinctive population of intestinal stem cells (ISCs). As in vertebrates, ISCs are multipotent, and Notch signalling is required to produce an appropriate fraction of enteroendocrine cells. Notch is also required for the differentiation of ISC daughter cells, a role that has not been addressed in vertebrates. Unlike previously characterized stem cells, which reside in niches containing a specific partner stromal cell, ISCs adjoin only the basement membrane, differentiated enterocytes and their most recent daughters. The identification of Drosophila intestinal stem cells with striking similarities to their vertebrate counterparts will facilitate the genetic analysis of normal and abnormal intestinal function.


Asunto(s)
Envejecimiento/fisiología , Drosophila melanogaster/citología , Tracto Gastrointestinal/citología , Células Madre Pluripotentes/citología , Animales , Apoptosis , Membrana Basal/citología , Membrana Basal/metabolismo , Diferenciación Celular , Linaje de la Célula , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Femenino , Tracto Gastrointestinal/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/citología , Células Madre Pluripotentes/metabolismo , Receptores Notch/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA