Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nutrients ; 16(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38931269

RESUMEN

Since the 1970s, the utility of nailfold capillaroscopy (NFC) in diagnosing rheumatological disorders such as systemic sclerosis has been well established. Further studies have also shown that NFC can detect non-rheumatic diseases such as diabetes, glaucoma, dermatitis, and Alzheimer disease. In the past decade, nailfold capillary morphological changes have also been reported as symptoms of unhealthy lifestyle habits such as poor diet, smoking, sleep deprivation, and even psychological stress, all of which contribute to slow blood flow. Therefore, studying the relationships between the morphology of nailfold capillaries and lifestyle habits has a high potential to indicate unhealthy states or even pre-disease conditions. Simple, inexpensive, and non-invasive methods such as NFC are important and useful for routine medical examinations. The present study began with a systematic literature search of the PubMed database followed by a summary of studies reporting the assessment of morphological changes detected by NFC, and a comprehensive review of NFC's utility in clinical diagnosis and improving unhealthy dietary lifestyles. It culminates in a summary of dietary and lifestyle health promotion strategy, assessed based on NFC and other related measurements that indicate healthy microvascular blood flow and endothelial function.


Asunto(s)
Estilo de Vida , Angioscopía Microscópica , Uñas , Humanos , Angioscopía Microscópica/métodos , Uñas/irrigación sanguínea , Dieta , Capilares/diagnóstico por imagen
2.
Nutrients ; 15(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37764672

RESUMEN

Nonalcoholic fatty liver disease (NAFLD), the most common form of chronic liver disease, can progress to hepatic steatosis, inflammation, and advanced fibrosis, increasing the risk of cirrhosis. Resveratrol, a natural polyphenol with antioxidant and anti-inflammatory properties, is beneficial in treating multiple metabolic diseases. Gnetin C, a resveratrol derivative obtained from Melinjo seed extract (MSE), shares similar health-promoting properties. We investigated the role of gnetin C in preventing NAFLD in a mouse model and compared it with resveratrol. Male C57BL/6J mice were fed a control diet (10% calories from fat), a high-fat choline-deficient (HFCD) diet (46% calories from fat) and HFCD diet supplemented with gnetin C (150 mg/kg BW·day-1) or resveratrol (150 mg/kg BW·day-1) for 12 weeks. Gnetin C supplementation reduced body and liver weight, and improved blood glucose levels and insulin sensitivity. Both gnetin C- and resveratrol reduced hepatic steatosis, with gnetin C also decreasing liver lipid content. Gnetin C and resveratrol ameliorated HFCD diet-induced hepatic fibrosis. The mRNA expression results, and western blot analyses showed that gnetin C and, to some extent, resveratrol downregulated fibrosis markers in the TGF-ß1 signaling pathway, indicating a possible safeguarding mechanism against NAFLD. These results suggest that gnetin C supplementation may protect against lipid deposition and hepatic fibrosis.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Masculino , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Dieta Alta en Grasa/efectos adversos , Resveratrol/farmacología , Ratones Endogámicos C57BL , Hígado/metabolismo , Cirrosis Hepática/etiología , Cirrosis Hepática/prevención & control , Cirrosis Hepática/metabolismo , Fibrosis , Extractos Vegetales/farmacología , Extractos Vegetales/metabolismo , Lípidos
3.
Nutrients ; 15(13)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37447370

RESUMEN

Fermented rice bran (FRB) is known to have numerous beneficial bioactivities, amongst which is its anti-inflammatory properties when used as a supplement. To determine its effects, we examined osteoclastogenesis and bone resorption caused by injections of lipopolysaccharide (LPS), using mice with and without FRB supplementation. The results were favorable: those that received FRB showed reduced osteoclast numbers and bone resorption compared to those with the control diet. Notably, receptor activator of NF-κB ligand (RANKL) and tumor necrosis factor-α (TNF-α) mRNA levels were shown to be lower in the LPS-treated animals with FRB supplementation. FRB's inhibitory effect on RANKL- and TNF-α-induced osteoclastogenesis was further confirmed in vitro. In culture, macrophages exhibited decreased TNF-α mRNA levels when treated with FRB extract and LPS versus treatment with LPS alone, but there was no significant change in RANKL levels in osteoblasts. We can conclude that FRB supplementation dampens the effect of LPS-induced osteoclastogenesis and bone resorption by controlling TNF-α expression in macrophages and the direct inhibition of osteoclast formation.


Asunto(s)
Resorción Ósea , Oryza , Animales , Ratones , Osteoclastos , Lipopolisacáridos/farmacología , Oryza/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Resorción Ósea/prevención & control , Resorción Ósea/metabolismo , Suplementos Dietéticos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ligando RANK/metabolismo , Diferenciación Celular
4.
Nutrients ; 14(22)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36432448

RESUMEN

Late-onset hypogonadism, a male age-related syndrome characterized by a decline in testosterone production in the testes, is commonly treated with testosterone replacement therapy, which has adverse side effects. Therefore, an alternative treatment is highly sought. Supplementation of a high dosage of biotin, a water-soluble vitamin that functions as a coenzyme for carboxylases involved in carbohydrate, lipid, and amino acid metabolism, has been shown to influence testis functions. However, the involvement of biotin in testis steroidogenesis has not been well clarified. In this study, we examined the effect of biotin on testosterone levels in mice and testis-derived cells. In mice, intraperitoneal treatment with biotin (1.5 mg/kg body weight) enhanced testosterone levels in the serum and testes, without elevating serum levels of pituitary luteinizing hormone. To investigate the mechanism in which biotin increased the testosterone level, mice testis-derived I-10 cells were used. The cells treated with biotin increased testosterone production in a dose- and time-dependent manner. Biotin treatment elevated intracellular cyclic adenosine monophosphate levels via adenylate cyclase activation, followed by the activation of protein kinase A and testosterone production. These results suggest that biotin may have the potential to improve age-related male syndromes associated with declining testosterone production.


Asunto(s)
Testículo , Testosterona , Ratones , Masculino , Animales , Biotina/farmacología , Hormona Luteinizante/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo
5.
Int J Mol Sci ; 23(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36232510

RESUMEN

Fermentation is thought to alter the composition and bioavailability of bioactive compounds in rice bran. However, how this process affects the anti-inflammatory effects of rice bran and the bioactive compounds that might participate in this function is yet to be elucidated. This study aimed to isolate bioactive compounds in fermented rice bran that play a key role in its anti-inflammatory function. The fermented rice bran was fractionated using a succession of solvent and solid-phase extractions. The fermented rice bran fractions were then applied to lipopolysaccharide (LPS)-activated murine macrophages to evaluate their anti-inflammatory activity. The hot water fractions (FRBA), 50% ethanol fractions (FRBB), and n-hexane fractions (FRBC) were all shown to be able to suppress the pro-inflammatory cytokine expression from LPS-stimulated RAW 264.7 cells. Subsequent fractions from the hot water fraction (FRBF and FRBE) were also able to reduce the inflammatory response of these cells to LPS. Further investigation revealed that tryptamine, a bacterial metabolite of tryptophan, was abundantly present in these extracts. These results indicate that tryptamine may play an important role in the anti-inflammatory effects of fermented rice bran. Furthermore, the anti-inflammatory effects of FRBE and tryptamine may depend on the activity of the aryl hydrocarbon receptor.


Asunto(s)
Lipopolisacáridos , Oryza , Animales , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Citocinas/metabolismo , Etanol/farmacología , Inflamación , Lipopolisacáridos/farmacología , Macrófagos , Ratones , Oryza/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Solventes/metabolismo , Triptaminas/metabolismo , Triptaminas/farmacología , Triptófano/metabolismo , Agua/metabolismo
6.
J Hypertens ; 40(10): 1935-1949, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35983805

RESUMEN

OBJECTIVE: Increased central venous pressure in congestive heart failure is responsible for renal dysfunction, which is mediated by renal venous congestion. Pericyte detachment from capillaries after renal congestion might trigger renal fibrogenesis via pericyte-myofibroblast transition (PMT). Platelet-derived growth factor receptors (PDGFRs), which are PMT indicators, were upregulated in our recently established renal congestion model. This study was designed to determine whether inhibition of the PDGFR pathway could suppress tubulointerstitial injury after renal congestion. METHODS: The inferior vena cava between the renal veins was ligated in male Sprague-Dawley rats, inducing congestion only in the left kidney. Imatinib mesylate or vehicle were injected intraperitoneally daily from 1 day before the operation. Three days after the surgery, the effect of imatinib was assessed by physiological, morphological and molecular methods. The inhibition of PDGFRs against transforming growth factor-ß1 (TGFB1)-induced fibrosis was also tested in human pericyte cell culture. RESULTS: Increased kidney weight and renal fibrosis were observed in the congested kidneys. Upstream inferior vena cava (IVC) pressure immediately increased to around 20 mmHg after IVC ligation in both the imatinib and saline groups. Although vasa recta dilatation and pericyte detachment under renal congestion were maintained, imatinib ameliorated the increased kidney weight and suppressed renal fibrosis around the vasa recta. TGFB1-induced elevation of fibrosis markers in human pericytes was suppressed by PDGFR inhibitors at the transcriptional level. CONCLUSION: The activation of the PDGFR pathway after renal congestion was responsible for renal congestion-induced fibrosis. This mechanism could be a candidate therapeutic target for renoprotection against renal congestion-induced tubulointerstitial injury.


Asunto(s)
Hiperemia , Enfermedades Renales , Animales , Fibrosis , Humanos , Mesilato de Imatinib/metabolismo , Mesilato de Imatinib/farmacología , Riñón/metabolismo , Enfermedades Renales/metabolismo , Masculino , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factor de Crecimiento Derivado de Plaquetas/farmacología , Ratas , Ratas Sprague-Dawley
7.
J Nutr Biochem ; 99: 108855, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34517096

RESUMEN

Patients with inflammatory bowel disease (IBD) have higher incidence of extraintestinal manifestations (EIM), including liver disorders, sarcopenia, and neuroinflammation. Fermented rice bran (FRB), generated from rice bran (RB), is rich in bioactive compounds, and exhibits anti-colitis activity. However, its role in EIM prevention is still unclear. Here, for the first time, we investigated whether EIM in female C57Bl/6N mice is attenuated by FRB supplementation. EIM was induced by repeated administration of 1.5% dextran sulfate sodium (DSS) in drinking water (4 d) followed by drinking water (12 d). Mice were divided into 3 groups-control (AIN93M), 10% RB, and 10% FRB. FRB ameliorated relapsing colitis and inflammation in muscle by significantly lowering proinflammatory cytokines Tnf-α and Il-6 in serum and advanced glycation end product-specific receptor (Ager) in serum and muscle when compared with the RB and control groups. As FRB reduced aspartate aminotransferase levels and oxidative stress, it might prevent liver disorders. FRB downregulated proinflammatory cytokine and chemokine transcripts responsible for neuroinflammation in the hippocampus and upregulated mRNA expression of G protein coupled receptors (GPRs), Gpr41 and Gpr43, in small and large intestines, which may explain the FRB-mediated protective mechanism. Hence, FRB can be used as a supplement to prevent IBD-associated EIM.


Asunto(s)
Colitis/tratamiento farmacológico , Colitis/inmunología , Fibras de la Dieta/administración & dosificación , Oryza/química , Preparaciones de Plantas/administración & dosificación , Animales , Quimiocinas/genética , Quimiocinas/inmunología , Enfermedad Crónica/terapia , Colitis/inducido químicamente , Colitis/genética , Sulfato de Dextran/efectos adversos , Fibras de la Dieta/análisis , Suplementos Dietéticos/análisis , Modelos Animales de Enfermedad , Femenino , Hipocampo/inmunología , Humanos , Interleucina-6/genética , Interleucina-6/inmunología , Intestinos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/inmunología , Estrés Oxidativo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
8.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34638882

RESUMEN

Persistent inflammatory reactions in microglial cells are strongly associated with neurodegenerative pathogenesis. Additionally, geranylgeraniol (GGOH), a plant-derived isoprenoid, has been found to improve inflammatory conditions in several animal models. It has also been observed that its chemical structure is similar to that of the side chain of menaquinone-4, which is a vitamin K2 sub-type that suppresses inflammation in mouse-derived microglial cells. In this study, we investigated whether GGOH has a similar anti-inflammatory effect in activated microglial cells. Particularly, mouse-derived MG6 cells pre-treated with GGOH were exposed to lipopolysaccharide (LPS). Thereafter, the mRNA levels of pro-inflammatory cytokines were determined via qRT-PCR, while protein expression levels, especially the expression of NF-κB signaling cascade-related proteins, were determined via Western blot analysis. The distribution of NF-κB p65 protein was also analyzed via fluorescence microscopy. Thus, it was observed that GGOH dose-dependently suppressed the LPS-induced increase in the mRNA levels of Il-1ß, Tnf-α, Il-6, and Cox-2. Furthermore, GGOH inhibited the phosphorylation of TAK1, IKKα/ß, and NF-κB p65 proteins as well as NF-κB nuclear translocation induced by LPS while maintaining IκBα expression. We showed that GGOH, similar to menaquinone-4, could alleviate LPS-induced microglial inflammation by targeting the NF-kB signaling pathway.


Asunto(s)
Diterpenos/farmacología , Inflamación/prevención & control , Microglía/efectos de los fármacos , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Transporte Activo de Núcleo Celular/efectos de los fármacos , Animales , Western Blotting , Línea Celular , Citocinas/genética , Citocinas/metabolismo , Expresión Génica/efectos de los fármacos , Inflamación/inducido químicamente , Lipopolisacáridos , Ratones , Microglía/citología , Microglía/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción ReIA/metabolismo
9.
Nutrients ; 13(5)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34069974

RESUMEN

The pregnane X receptor (PXR) is the key regulator of our defense mechanism against foreign substances such as drugs, dietary nutrients, or environmental pollutants. Because of increased health consciousness, the use of dietary supplements has gradually increased, and most of them can activate PXR. Therefore, an analysis of the interaction between drugs and nutrients is important because altered levels of drug-metabolizing enzymes or transporters can remarkably affect the efficiency of a co-administered drug. In the present study, we analyzed the effect of vitamin K-mediated PXR activation on drug metabolism-related gene expression in intestine-derived LS180 cells via gene expression studies and western blotting analyses. We demonstrated that menaquinone 4 (MK-4), along with other vitamin Ks, including vitamin K1, has the potential to induce MDR1 and CYP3A4 gene expression. We showed that PXR knockdown reversed MK-4-mediated stimulation of these genes, indicating the involvement of PXR in this effect. In addition, we showed that the expression of MDR1 and CYP3A4 genes increased synergistically after 24 h of rifampicin and MK-4 co-treatment. Our study thus elucidates the importance of drug-nutrient interaction mediated via PXR.


Asunto(s)
Citocromo P-450 CYP3A/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Receptor X de Pregnano/efectos de los fármacos , Vitamina K/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/efectos de los fármacos , Carcinoma/tratamiento farmacológico , Carcinoma/metabolismo , Línea Celular Tumoral , Humanos , Neoplasias Intestinales/tratamiento farmacológico , Neoplasias Intestinales/metabolismo , Fenómenos Fisiológicos de la Nutrición/genética , Rifampin/administración & dosificación , Vitamina K 1/farmacología , Vitamina K 2/análogos & derivados , Vitamina K 2/farmacología
10.
Molecules ; 26(6)2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33803601

RESUMEN

Hypogonadism, associated with low levels of testosterone synthesis, has been implicated in several diseases. Recently, the quest for natural alternatives to prevent and treat hypogonadism has gained increasing research interest. To this end, the present study explored the effect of S-allyl cysteine (SAC), a characteristic organosulfur compound in aged-garlic extract, on testosterone production. SAC was administered at 50 mg/kg body weight intraperitoneally into 7-week-old BALB/c male mice in a single-dose experiment. Plasma levels of testosterone and luteinizing hormone (LH) and testis levels of proteins involved in steroidogenesis were measured by enzymatic immunoassay and Western blot, respectively. In addition, mouse testis-derived I-10 cells were also used to investigate the effect of SAC on steroidogenesis. In the animal experiment, SAC significantly elevated testosterone levels in both the plasma and the testis without changing the LH level in plasma and increased phosphorylated protein kinase A (p-PKA) levels. Similar results were also observed in I-10 cells. The findings demonstrating the increasing effect of SAC on p-PKA and mRNA levels of Cyp11a suggest that SAC increases the testosterone level by activating the PKA pathway and could be a potential target for hypogonadism therapeutics.


Asunto(s)
Cisteína/análogos & derivados , Testículo/efectos de los fármacos , Testículo/metabolismo , Testosterona/biosíntesis , Animales , Línea Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Cisteína/farmacología , Activación Enzimática/efectos de los fármacos , Ajo/química , Células Intersticiales del Testículo/efectos de los fármacos , Células Intersticiales del Testículo/metabolismo , Hormona Luteinizante/sangre , Masculino , Ratones , Ratones Endogámicos BALB C , Fosforilación , Testículo/citología , Testosterona/sangre
11.
Int J Mol Sci ; 20(9)2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-31083375

RESUMEN

Geranylgeraniol (GGOH), a natural isoprenoid found in plants, has anti-inflammatory effects via inhibiting the activation of nuclear factor-kappa B (NFκB). However, its detailed mechanism has not yet been elucidated. Recent studies have revealed that isoprenoids can modulate signaling molecules in innate immune responses. We found that GGOH decreased the expression of lipopolysaccharide (LPS)-induced inflammatory genes in human macrophage-like THP-1 cells. Furthermore, we observed that the suppression of NFκB signaling proteins, in particular interleukin-1 receptor-associated kinase 1 (IRAK1) and tumor necrosis factor receptor-associated factor 6 (TRAF6), occurred in GGOH-treated cells prior to LPS stimulation, suggesting an immunomodulatory effect. These results indicate that GGOH may modulate and help prevent excessive NFκB activation that can lead to numerous diseases.


Asunto(s)
Diterpenos/farmacología , Inflamación/patología , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , FN-kappa B/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Animales , Línea Celular , Humanos , Inflamación/genética , Lipopolisacáridos , Macrófagos/efectos de los fármacos , Ratones , Modelos Biológicos , Fosforilación/efectos de los fármacos , Células RAW 264.7 , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Células THP-1
12.
Nat Commun ; 10(1): 1835, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31015435

RESUMEN

Diabetic kidney disease is a major cause of renal failure that urgently necessitates a breakthrough in disease management. Here we show using untargeted metabolomics that levels of phenyl sulfate, a gut microbiota-derived metabolite, increase with the progression of diabetes in rats overexpressing human uremic toxin transporter SLCO4C1 in the kidney, and are decreased in rats with limited proteinuria. In experimental models of diabetes, phenyl sulfate administration induces albuminuria and podocyte damage. In a diabetic patient cohort, phenyl sulfate levels significantly correlate with basal and predicted 2-year progression of albuminuria in patients with microalbuminuria. Inhibition of tyrosine phenol-lyase, a bacterial enzyme responsible for the synthesis of phenol from dietary tyrosine before it is metabolized into phenyl sulfate in the liver, reduces albuminuria in diabetic mice. Together, our results suggest that phenyl sulfate contributes to albuminuria and could be used as a disease marker and future therapeutic target in diabetic kidney disease.


Asunto(s)
Albuminuria/etiología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/sangre , Microbioma Gastrointestinal/fisiología , Ésteres del Ácido Sulfúrico/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Albuminuria/sangre , Albuminuria/tratamiento farmacológico , Albuminuria/patología , Animales , Animales Modificados Genéticamente , Estudios de Cohortes , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/orina , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 2/sangre , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/patología , Perros , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Femenino , Humanos , Células de Riñón Canino Madin Darby , Masculino , Metabolómica/métodos , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Transportadores de Anión Orgánico/genética , Podocitos/metabolismo , Podocitos/patología , Ratas , Estreptozocina/toxicidad , Ésteres del Ácido Sulfúrico/sangre , Tirosina Fenol-Liasa/antagonistas & inhibidores , Tirosina Fenol-Liasa/metabolismo , Adulto Joven
13.
Clin Exp Nephrol ; 23(4): 455-464, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30426292

RESUMEN

BACKGROUND: Tolvaptan is an effective treatment for polycystic kidney disease (PKD), but also causes unfortunate polyuria. Hydrochlorothiazide (HCTZ) has been shown to reduce urine volume in nephrogenic diabetes insipidus, raising the possibility that HCTZ could also be effective in reducing tolvaptan-induced polyuria. In this study, we examined the combined administration of HCTZ and tolvaptan. METHODS: Male PCK rats were divided into four groups of normal chow (Cont), normal chow plus tolvaptan, gavage HCTZ treatment, and tolvaptan + HCTZ. Biochemical examinations of the plasma and urine were performed as well as histological and molecular (mRNA and protein expression) analyses. RESULTS: Groups treated with tolvaptan had significantly higher 24 h urine excretion, which was significantly reduced in the tolvaptan + HCTZ group after 2 weeks. Cyst size, pERK protein expression, and Cyclin D1 mRNA expression were all significantly reduced in both the tolvaptan and tolvaptan + HCTZ groups, indicating that HCTZ did not affect the beneficial functions of tolvaptan. Notably, aquaporin 2 redistribution from the apical to intracellular domains was observed in tolvaptan-treated rats and was partially reversed in the tolvaptan + HCTZ group. The renal glomerular filtration rate was reduced in the tolvaptan + HCTZ group. Significantly lowered mRNA expression of neuronal nitric oxide synthase, prostaglandin E synthase 2 and renin were also found in the medulla, but not in the cortex. CONCLUSION: HCTZ reduces tolvaptan-induced polyuria without altering its beneficial effects on PKD. This novel therapeutic combination could potentially lead to better PKD treatments and improved quality of life for the affected patients.


Asunto(s)
Antagonistas de los Receptores de Hormonas Antidiuréticas/uso terapéutico , Diuréticos/uso terapéutico , Hidroclorotiazida/uso terapéutico , Enfermedades Renales Poliquísticas/tratamiento farmacológico , Poliuria/tratamiento farmacológico , Tolvaptán/uso terapéutico , Animales , Antagonistas de los Receptores de Hormonas Antidiuréticas/efectos adversos , Acuaporina 2/metabolismo , Presión Sanguínea/efectos de los fármacos , Quimioterapia Combinada , Expresión Génica/efectos de los fármacos , Tasa de Filtración Glomerular , Masculino , Óxido Nítrico Sintasa de Tipo I/genética , Enfermedades Renales Poliquísticas/fisiopatología , Poliuria/inducido químicamente , Prostaglandina-E Sintasas/genética , ARN Mensajero/metabolismo , Ratas , Renina/genética , Tolvaptán/efectos adversos , Orina
14.
Eur J Nutr ; 52(3): 1191-9, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22847643

RESUMEN

PURPOSE: The isoprenoid geranylgeraniol (GGOH) inhibits nuclear factor-kappa B (NF-κB) activation in the liver, yet the mechanism remains unclear. We investigated the modulation and inhibition of lipopolysaccharide (LPS)-induced NF-κB signaling in the liver of rats fed a GGOH-supplemented diet. METHODS: Rats were fed a diet supplemented with or without GGOH for 10 days. Rats were then intraperitoneally injected with 0.5 mg/kg LPS or vehicle (sterilized saline) and fasted for 18 h. Plasma levels of the inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6, and the liver damage indicators alanine and aspartate aminotransferases (ALT and AST) were assessed. Liver mRNA and proteins were assayed for changes in NF-κB target genes and signal transduction genes. RESULTS: Rats fed a high-dose, GGOH-supplemented diet showed significantly lower levels of plasma inflammatory cytokines and ALT and AST activities. In the liver, GGOH significantly suppressed NF-κB activation and mRNA expression of its pro-inflammatory target genes. Furthermore, GGOH supplementation substantially suppressed mRNA expression of signal transducer genes upstream of the IκB kinase complex. Western blotting of liver extracts further demonstrated the substantial decrease in total IL-1 receptor-associated kinase 1 (IRAK1) and TNF receptor-associated factor 6 (TRAF6), leading to lower signal transduction and inhibition of NF-κB after LPS. CONCLUSION: A 10-day, high-dose, GGOH-supplemented diet was sufficient to inhibit LPS-induced inflammation and activation of NF-κB in rat livers. GGOH significantly modulated NF-κB signaling molecules, inhibiting its signal transduction and activation in the liver, thus protecting against liver damage.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Suplementos Dietéticos , Diterpenos/uso terapéutico , Regulación hacia Abajo , Hepatitis/prevención & control , Hígado/metabolismo , FN-kappa B/antagonistas & inhibidores , Animales , Antiinflamatorios no Esteroideos/administración & dosificación , Citocinas/antagonistas & inhibidores , Citocinas/sangre , Citocinas/metabolismo , Diterpenos/administración & dosificación , Insuficiencia Hepática/etiología , Insuficiencia Hepática/prevención & control , Hepatitis/inmunología , Hepatitis/metabolismo , Hepatitis/fisiopatología , Quinasa I-kappa B/antagonistas & inhibidores , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/antagonistas & inhibidores , Quinasas Asociadas a Receptores de Interleucina-1/genética , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Lipopolisacáridos , Hígado/inmunología , Hígado/fisiopatología , Masculino , FN-kappa B/sangre , FN-kappa B/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Ratas , Ratas Wistar , Transducción de Señal , Factor 6 Asociado a Receptor de TNF/antagonistas & inhibidores , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/metabolismo
15.
Hypertens Res ; 35(10): 1024-31, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22914555

RESUMEN

Albuminuria is an indicator of renal injury and is closely linked with cardiovascular disease (CVD). However, the mechanism by which albumin is excreted in the urine remains unclear. As the juxtamedullary region of the kidney is highly susceptible to pressure increase, juxtamedullary injury is observed from an early phase in hypertensive rat models. Anatomical similarities are observed between the pre-glomerular vessels of the juxtamedullary nephron and the cerebral vasculature. We previously named these 'strain vessels' for their high vascular tone and exposure to higher pressures. The current studies were designed to determine whether albuminuria is the result of juxtamedullary nephron injury, indicating the presence of pressure injury to the strain vessels in spontaneously hypertensive stroke-prone rats (SHR-SP) fed a high-salt diet. Albuminuria was associated with juxtamedullary nephron injury, and the enhanced expression of monocyte chemotactic protein-1 (MCP-1) and tumor growth factor-beta (TGF-ß) in 12-week-old SHR-SP rats fed a 4% high-salt diet from the age of 6 weeks. The wall thickness of the pre-glomerular vessels of the juxtamedullary nephron was also associated with that of the perforating artery of the middle cerebral artery. Reducing the blood pressure with nifedipine reduced the degree of albuminuria and juxtamedullary nephron injury as well as MCP-1 and TGF-ß expression in the SHR-SP rats fed an 8% high-salt diet from the age of 9 weeks. Nifedipine inhibited stroke events in these animals until they were 14 weeks old. These results indicate that albuminuria is a result of juxtamedullary nephron injury and a marker of pressure-induced injury of the strain vessels.


Asunto(s)
Albuminuria/etiología , Aparato Yuxtaglomerular/patología , Nefronas/patología , Accidente Cerebrovascular/etiología , Actinas/análisis , Animales , Arteriolas/patología , Presión Sanguínea , Encéfalo/irrigación sanguínea , Quimiocina CCL2/análisis , Masculino , Ratas , Ratas Endogámicas SHR , Factor de Crecimiento Transformador beta/análisis
16.
Lipids Health Dis ; 10: 158, 2011 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-21914161

RESUMEN

BACKGROUND: Vitamin K is essential for the posttranslational modification of various Gla proteins. Although it is widespread in several organs, including the testis, the function of vitamin K in these organs is not well characterized. In this study, we investigated the function of vitamin K in the testis and analyzed its role in steroidogenesis. METHODS: Eight-week-old male Wistar rats were fed a diet supplemented with menaquinone-4 (MK-4, 75 mg/kg diet), one of the predominant K2 vitamins present in the testis, for 5 weeks. In vivo testosterone levels of the rats' plasma and testes were measured by enzyme-linked immunosorbent assay, and in vitro testosterone levels of testis-derived tumor cells (I-10 cells) maintained in Ham's F-10 medium with 10% fetal bovine serum were measured following treatment with MK-4 (0 to 100 µM) at several time points. Testosterone and cellular protein levels were analyzed with respect to their effects on steroidogenesis. RESULTS: Testosterone levels in the plasma and testes of MK-4-fed rats were significantly increased compared to those of control rats, with no obvious differences in plasma luteinizing hormone levels. Secreted testosterone levels from I-10 cells were elevated by MK-4, but not by vitamin K1, in a dose-dependent manner independent of cAMP treatment. Western blot analysis revealed that expression of CYP11A, the rate-limiting enzyme in steroidogenesis, and phosphorylation levels of protein kinase A (PKA) and the cAMP response element-binding protein were all stimulated by the presence of MK-4. Enhancement of testosterone production was inhibited by H89, a specific inhibitor of PKA, but not by warfarin, an inhibitor of γ-glutamylcarboxylation. CONCLUSIONS: MK-4 stimulates testosterone production in rats and testis-derived tumor cells via activation of PKA. MK-4 may be involved in steroidogenesis in the testis, and its supplementation could reverse the downregulation of testosterone production in elders.


Asunto(s)
Células Intersticiales del Testículo/metabolismo , Testículo/metabolismo , Testosterona/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Vitamina K 2/análogos & derivados , Animales , Ligasas de Carbono-Carbono/antagonistas & inhibidores , Línea Celular Tumoral , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células Intersticiales del Testículo/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Ratas , Ratas Wistar , Organismos Libres de Patógenos Específicos , Testículo/efectos de los fármacos , Testosterona/sangre , Distribución Tisular , Vitamina K 1/antagonistas & inhibidores , Vitamina K 1/metabolismo , Vitamina K 2/farmacocinética , Vitamina K 2/farmacología
17.
J Nutr Biochem ; 21(11): 1120-6, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20149620

RESUMEN

Vitamin K is essential for blood coagulation and bone metabolism in mammals. This vitamin functions as a cofactor in the posttranslational synthesis of γ-carboxyglutamic acid (Gla) from glutamic acid residues. However, other functions of vitamin K have been reported recently. We previously found that vitamin K suppresses the inflammatory reaction induced by lipopolysaccharide (LPS) in rats and human macrophage-like THP-1 cells. In this study, we further investigated the mechanism underlying the anti-inflammatory effect of vitamin K by using cultures of LPS-treated human- and mouse-derived cells. All the vitamin K analogues analyzed in our study exhibited varied levels of anti-inflammatory activity. The isoprenyl side chain structures, except geranylgeraniol, of these analogues did not show such activity; warfarin did not interfere with this activity. The results of our study suggest that the 2-methyl-1,4-naphtoquinone ring structure contributes to express the anti-inflammatory activity, which is independent of the Gla formation activity of vitamin K. Furthermore, menaquinone-4, a form of vitamin K2, reduced the activation of nuclear factor κB (NFκB) and inhibited the phosphorylation of IKKα/ß after treatment of cells with LPS. These results clearly show that the anti-inflammatory activity of vitamin K is mediated via the inactivation of the NFκB signaling pathway.


Asunto(s)
Citocinas/metabolismo , Quinasa I-kappa B/metabolismo , FN-kappa B/metabolismo , Vitamina K/farmacología , Ácido 1-Carboxiglutámico/metabolismo , Animales , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Western Blotting , Línea Celular , Humanos , Interleucina-6/metabolismo , Lipopolisacáridos/efectos adversos , Lipopolisacáridos/metabolismo , Ratones , Ratones Endogámicos C57BL , Fosforilación , ARN Mensajero/metabolismo , Vitamina K/metabolismo
18.
Biosci Biotechnol Biochem ; 70(4): 926-32, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16636460

RESUMEN

Vitamin K (K) is essential for blood coagulation and bone metabolism in mammals. K acts as a cofactor in the posttranslational synthesis of gamma-carboxyglutamic acid from glutamic acid residues. In addition to the liver and bone, K is found in the brain, heart, kidney and gonadal tissue. However, the physiological role of K in these various organs is not yet fully understood. It is likely that K has functions other than its role as a cofactor of protein gamma-glutamyl carboxylation. We used in this study the DNA microarray technique to identify the effect of K status on gene expression in the rat liver. The expression of genes involved in the acute inflammation response was enhanced in rats fed with a K-deficient diet relative to the control and K1-supplemented diet groups. Moreover, dietary supplementation with K1 suppressed the inflammation induced by lipopolysaccharide administration. These results indicate that orally administrated K1 suppressed inflammation in the rat.


Asunto(s)
Lipopolisacáridos/farmacología , Vitamina K/farmacología , Administración Oral , Animales , Coagulación Sanguínea/efectos de los fármacos , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Interleucina-6/genética , Lipopolisacáridos/administración & dosificación , Hígado/efectos de los fármacos , Hígado/metabolismo , ARN Mensajero/genética , Ratas , Ratas Wistar , Vitamina K/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA