Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Leukemia ; 38(6): 1256-1265, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38740980

RESUMEN

Recent advances in in-depth data-independent acquisition proteomic analysis have enabled comprehensive quantitative analysis of >10,000 proteins. Herein, an integrated proteogenomic analysis for inherited bone marrow failure syndrome (IBMFS) was performed to reveal their biological features and to develop a proteomic-based diagnostic assay in the discovery cohort; dyskeratosis congenita (n = 12), Fanconi anemia (n = 11), Diamond-Blackfan anemia (DBA, n = 9), Shwachman-Diamond syndrome (SDS, n = 6), ADH5/ALDH2 deficiency (n = 4), and other IBMFS (n = 18). Unsupervised proteomic clustering identified eight independent clusters (C1-C8), with the ribosomal pathway specifically downregulated in C1 and C2, enriched for DBA and SDS, respectively. Six patients with SDS had significantly decreased SBDS protein expression, with two of these not diagnosed by DNA sequencing alone. Four patients with ADH5/ALDH2 deficiency showed significantly reduced ADH5 protein expression. To perform a large-scale rapid IBMFS screening, targeted proteomic analysis was performed on 417 samples from patients with IBMFS-related hematological disorders (n = 390) and healthy controls (n = 27). SBDS and ADH5 protein expressions were significantly reduced in SDS and ADH5/ALDH2 deficiency, respectively. The clinical application of this first integrated proteogenomic analysis would be useful for the diagnosis and screening of IBMFS, where appropriate clinical screening tests are lacking.


Asunto(s)
Enfermedades de la Médula Ósea , Trastornos de Fallo de la Médula Ósea , Proteogenómica , Humanos , Trastornos de Fallo de la Médula Ósea/genética , Trastornos de Fallo de la Médula Ósea/patología , Proteogenómica/métodos , Masculino , Femenino , Enfermedades de la Médula Ósea/genética , Enfermedades de la Médula Ósea/patología , Niño , Adulto , Adolescente , Preescolar , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/diagnóstico , Adulto Joven , Anemia de Fanconi/genética , Anemia de Fanconi/diagnóstico , Proteómica/métodos , Lactante , Síndrome de Shwachman-Diamond/genética , Disqueratosis Congénita/genética , Disqueratosis Congénita/diagnóstico , Disqueratosis Congénita/patología
2.
J Clin Immunol ; 44(4): 103, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642164

RESUMEN

Epstein-Barr virus (EBV) infection can lead to infectious mononucleosis (EBV-IM) and, more rarely, EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH), which is characterized by a life-threatening hyperinflammatory cytokine storm with immune dysregulation. Interferon-gamma (IFNγ) has been identified as a critical mediator for primary HLH; however, the detailed role of IFNγ and other cytokines in EBV-HLH is not fully understood. In this study, we used single-cell RNA sequencing to characterize the immune landscape of EBV-HLH and compared it with EBV-IM. Three pediatric patients with EBV-HLH with different backgrounds, one with X-linked lymphoproliferative syndrome type 1 (XLP1), two with chronic active EBV disease (CAEBV), and two patients with EBV-IM were enrolled. The TUBA1B + STMN1 + CD8 + T cell cluster, a responsive proliferating cluster with rich mRNA detection, was explicitly observed in EBV-IM, and the upregulation of SH2D1A-the gene responsible for XLP1-was localized in this cluster. This proliferative cluster was scarcely observed in EBV-HLH cases. In EBV-HLH cases with CAEBV, upregulation of LAG3 was observed in EBV-infected cells, which may be associated with an impaired response by CD8 + T cells. Additionally, genes involved in type I interferon (IFN) signaling were commonly upregulated in each cell fraction of EBV-HLH, and activation of type II IFN signaling was observed in CD4 + T cells, natural killer cells, and monocytes but not in CD8 + T cells in EBV-HLH. In conclusion, impaired responsive proliferation of CD8 + T cells and upregulation of type I IFN signaling were commonly observed in EBV-HLH cases, regardless of the patients' background, indicating the key features of EBV-HLH.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Linfohistiocitosis Hemofagocítica , Trastornos Linfoproliferativos , Humanos , Niño , Herpesvirus Humano 4 , Linfohistiocitosis Hemofagocítica/diagnóstico , Linfohistiocitosis Hemofagocítica/genética , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/genética , Linfocitos T CD8-positivos , Interferón gamma/genética , Trastornos Linfoproliferativos/diagnóstico , Trastornos Linfoproliferativos/genética , Trastornos Linfoproliferativos/complicaciones , Perfilación de la Expresión Génica
3.
Blood Adv ; 8(9): 2138-2147, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38429084

RESUMEN

ABSTRACT: Epstein-Barr virus (EBV)-positive (EBV+) nodal T- and natural killer (NK)-cell lymphoma is a peripheral T-cell lymphoma (EBV+ nPTCL) that presents as a primary nodal disease with T-cell phenotype and EBV-harboring tumor cells. To date, the genetic aspect of EBV+ nPTCL has not been fully investigated. In this study, whole-exome and/or whole-genome sequencing was performed on 22 cases of EBV+ nPTCL. TET2 (68%) and DNMT3A (32%) were observed to be the most frequently mutated genes whose presence was associated with poor overall survival (P = .004). The RHOA p.Gly17Val mutation was identified in 2 patients who had TET2 and/or DNMT3A mutations. In 4 patients with TET2/DNMT3A alterations, blood cell-rich tissues (the bone marrow [BM] or spleen) were available as paired normal samples. Of 4 cases, 3 had at least 1 identical TET2/DNMT3A mutation in the BM or spleen. Additionally, the whole part of the EBV genome was sequenced and structural variations (SVs) were found frequent among the EBV genomes (63%). The most frequently identified type of SV was deletion. In 1 patient, 4 pieces of human chromosome 9, including programmed death-ligand 1 gene (PD-L1) were identified to be tandemly incorporated into the EBV genome. The 3' untranslated region of PD-L1 was truncated, causing a high-level of PD-L1 protein expression. Overall, the frequent TET2 and DNMT3A mutations in EBV+ nPTCL seem to be closely associated with clonal hematopoiesis and, together with the EBV genome deletions, may contribute to the pathogenesis of this intractable lymphoma.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Genoma Viral , Mutación , Humanos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/virología , Infecciones por Virus de Epstein-Barr/genética , Adulto , Herpesvirus Humano 4/genética , ADN Metiltransferasa 3A , Linfoma Extranodal de Células NK-T/genética , Linfoma Extranodal de Células NK-T/virología , Variación Estructural del Genoma , Linfoma de Células T Periférico/genética , Linfoma de Células T Periférico/virología , Dioxigenasas
4.
PLoS Pathog ; 20(2): e1011954, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38300891

RESUMEN

Epstein-Barr virus (EBV) is a ubiquitous human lymphotropic herpesvirus that is causally associated with several malignancies. In addition to latent factors, lytic replication contributes to cancer development. In this study, we examined whether the lytic gene BNRF1, which is conserved among gamma-herpesviruses, has an important role in lymphomagenesis. We found that lymphoblastoid cell lines (LCLs) established by BNRF1-knockout EBV exhibited remarkably lower pathogenicity in a mice xenograft model than LCLs produced by wild-type EBV (LCLs-WT). RNA-seq analyses revealed that BNRF1 elicited the expression of interferon-inducible protein 27 (IFI27), which promotes cell proliferation. IFI27 knockdown in LCLs-WT resulted in excessive production of reactive oxygen species, leading to cell death and significantly decreased their pathogenicity in vivo. We also confirmed that IFI27 was upregulated during primary infection in B-cells. Our findings revealed that BNRF1 promoted robust proliferation of the B-cells that were transformed by EBV latent infection via IFI27 upregulation both in vitro and in vivo.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesviridae , Humanos , Animales , Ratones , Herpesvirus Humano 4 , Interferones/metabolismo , Regulación hacia Arriba , Herpesviridae/metabolismo , Latencia del Virus , Proteínas de la Membrana/metabolismo
6.
Microbiol Spectr ; 11(4): e0044023, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37409959

RESUMEN

The in vitro growth transformation of primary B cells by Epstein-Barr virus (EBV) is the initial step in the development of posttransplant lymphoproliferative disorder (PTLD). We performed electron microscopic analysis and immunostaining of primary B cells infected with wild-type EBV. Interestingly, the nucleolar size was increased by two days after infection. A recent study found that nucleolar hypertrophy, which is caused by the induction of the IMPDH2 gene, is required for the efficient promotion of growth in cancers. In the present study, RNA-seq revealed that the IMPDH2 gene was significantly induced by EBV and that its level peaked at day 2. Even without EBV infection, the activation of primary B cells by the CD40 ligand and interleukin-4 increased IMPDH2 expression and nucleolar hypertrophy. Using EBNA2 or LMP1 knockout viruses, we found that EBNA2 and MYC, but not LMP1, induced the IMPDH2 gene during primary infections. IMPDH2 inhibition by mycophenolic acid (MPA) blocked the growth transformation of primary B cells by EBV, leading to smaller nucleoli, nuclei, and cells. Mycophenolate mofetil (MMF), which is a prodrug of MPA that is approved for use as an immunosuppressant, was tested in a mouse xenograft model. Oral MMF significantly improved the survival of mice and reduced splenomegaly. Taken together, these results indicate that EBV induces IMPDH2 expression through EBNA2-dependent and MYC-dependent mechanisms, leading to the hypertrophy of the nucleoli, nuclei, and cells as well as efficient cell proliferation. Our results provide basic evidence that IMPDH2 induction and nucleolar enlargement are crucial for B cell transformation by EBV. In addition, the use of MMF suppresses PTLD. IMPORTANCE EBV infections cause nucleolar enlargement via the induction of IMPDH2, which are essential for B cell growth transformation by EBV. Although the significance of IMPDH2 induction and nuclear hypertrophy in the tumorigenesis of glioblastoma has been reported, EBV infection brings about the change quickly by using its transcriptional cofactor, EBNA2, and MYC. Moreover, we present here, for the novel, basic evidence that an IMPDH2 inhibitor, namely, MPA or MMF, can be used for EBV-positive posttransplant lymphoproliferative disorder (PTLD).


Asunto(s)
Infecciones por Virus de Epstein-Barr , Trastornos Linfoproliferativos , Humanos , Herpesvirus Humano 4/genética , Infecciones por Virus de Epstein-Barr/genética , Antígenos Nucleares del Virus de Epstein-Barr/genética , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Proteínas Virales/genética , Hipertrofia , IMP Deshidrogenasa
7.
Transl Pediatr ; 12(5): 827-844, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37305720

RESUMEN

Background: Molecular analyses in hematological malignancies provide insights about genetic makeup. Probable etiological factors in leukemogenesis could also be disclosed. Since genetic analyses are still primitive in Iraq, a country of repeated wars, we conceived of performing next-generation sequencing (NGS), to disclose the genomic landscape of acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) among a cohort of Iraqi children. Methods: Dried blood samples were collected from Iraqi children with ALL (n=55), or AML (n=11), and transferred to Japan where NGS was done. Whole-exome, whole-genome, and targeted gene sequencings were performed. Results: Somatic point mutations and the copy number variations among Iraqi children with acute leukemia were comparable with those in other countries, and cytosine-to-thymine nucleotide alterations were dominant. Strikingly, TCF3-PBX1 was the most recurrent fusion gene (22.4%) in B-cell precursor ALL (B-ALL), and acute promyelocytic leukemia (AML-M3) was subtyped in 5 AML cases. Additionally, a high frequency of RAS signaling pathway mutations was detected in children with B-ALL (38.8%), along with 3 AML cases that carried oncogenic RAS. Conclusions: Apart from disclosing the high frequency of TCF3-PBX1, NGS confirmed our previous finding of recurrent RAS mutations in Iraqi childhood acute leukemia. Our results suggest that the biology of Iraqi childhood acute leukemia is in part characteristic, where the war-aftermath environment or geography might play a role.

11.
Pediatr Surg Int ; 39(1): 179, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37041419

RESUMEN

PURPOSE: Necrotizing enterocolitis (NEC) causes fatal intestinal necrosis in neonates, but its etiology is unknown. We analyzed the intestinal immune response to NEC. METHODS: Using single-cell RNA sequencing (scRNA-seq), we analyzed the gene expression profiles of intestinal immune cells from four neonates with intestinal perforation (two with NEC and two without NEC). Target mononuclear cells were extracted from the lamina propria of the resected intestines. RESULTS: In all four cases, major immune cells, such as T cells (15.1-47.7%), B cells (3.1-19.0%), monocytes (16.5-31.2%), macrophages (1.6-17.4%), dendritic cells (2.4-12.2%), and natural killer cells (7.5-12.8%), were present in similar proportions to those in the neonatal cord blood. Gene set enrichment analysis showed that the MTOR, TNF-α, and MYC signaling pathways were enriched in T cells of the NEC patients, suggesting upregulated immune responses related to inflammation and cell proliferation. In addition, all four cases exhibited a bias toward cell-mediated inflammation, based on the predominance of T helper 1 cells. CONCLUSION: Intestinal immunity in NEC subjects exhibited stronger inflammatory responses compared to non-NEC subjects. Further scRNA-seq and cellular analysis may improve our understanding of the pathogenesis of NEC.


Asunto(s)
Enterocolitis Necrotizante , Transducción de Señal , Recién Nacido , Humanos , Enterocolitis Necrotizante/patología , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Intestinos/patología , Inflamación , Análisis de Secuencia de ARN
12.
J Pediatr Hematol Oncol ; 45(4): e510-e513, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36898020

RESUMEN

Differential diagnosis of juvenile hemochromatosis along with hemolytic anemia is often difficult. We report a 23-year-old woman with macrocytic hemolytic anemia with iron overload. The patient showed high serum ferritin and transferrin saturation and low serum transferrin and ceruloplasmin. We also noticed stomatocytes in her blood smear, which was confirmed by scanning electron microscopy. Target gene sequencing identified a mutation in PIEZO1 (heterozygous c.6008C>A: p.A2003D). This mutation was reported previously in a family with dehydrated hereditary stomatocytosis (DHS1, [OMIM 194380]), but in the current case, it was identified to be a de novo mutation. We underscore DHS1 in the differential diagnosis of iron overload associated with non-transfused hemolytic anemia in children and young adults.


Asunto(s)
Anemia Hemolítica , Hemocromatosis , Sobrecarga de Hierro , Femenino , Humanos , Adulto Joven , Hemocromatosis/complicaciones , Hemocromatosis/genética , Hemocromatosis/terapia , Proteína de la Hemocromatosis/genética , Antígenos de Histocompatibilidad Clase I/genética , Canales Iónicos/genética , Sobrecarga de Hierro/genética , Sobrecarga de Hierro/complicaciones , Mutación , Transferrina/genética , Transferrinas/genética
14.
Cell Transplant ; 31: 9636897221143364, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36537564

RESUMEN

Melphalan is widely used for hematopoietic stem cell transplantation (HSCT) conditioning. However, the relationship between its pharmacokinetic (PK) and transplantation outcomes in children has not been thoroughly investigated. We prospectively analyzed the relationship between melphalan area under the curve (AUC) and transplantation outcome and examined the development of a predictive model for melphalan clearance in children. This study included 43 children aged 0 to 19 years who underwent HSCT following a melphalan-based conditioning regimen from 2017 to 2021. In univariable analysis, high-melphalan AUC resulted in a significantly lower cumulative incidence of acute graft-versus-host disease and a higher cumulative incidence of thrombotic microangiopathy, although no significant difference was observed in survival. Regression analysis of a randomly selected derivation cohort (n = 21) revealed the following covariate PK model: predicted melphalan clearance (mL/min) = 6.47 × 24-h urinary creatinine excretion rate (CER, g/day) × 24-h creatinine clearance rate (CCR, mL/min) + 92.8. In the validation cohort (n = 22), the measured melphalan clearance values were significantly correlated with those calculated based on the prediction equation (R2 = 0.663). These results indicate that melphalan exposure may be optimized by adjusting the melphalan dose according to CER and CCR.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Humanos , Niño , Melfalán/farmacocinética , Creatinina , Acondicionamiento Pretrasplante/métodos , Trasplante de Células Madre Hematopoyéticas/métodos , Enfermedad Injerto contra Huésped/etiología
15.
J Virol ; 96(18): e0073922, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36094314

RESUMEN

Epstein-Barr virus (EBV) persists in human cells as episomes. EBV episomes are chromatinized and their 3D conformation varies greatly in cells expressing different latency genes. We used HiChIP, an assay which combines genome-wide chromatin conformation capture followed by deep sequencing (Hi-C) and chromatin immunoprecipitation (ChIP), to interrogate the EBV episome 3D conformation in different cancer cell lines. In an EBV-transformed lymphoblastoid cell line (LCL) GM12878 expressing type III EBV latency genes, abundant genomic interactions were identified by H3K27ac HiChIP. A strong enhancer was located near the BILF2 gene and looped to multiple genes around BALFs loci. Perturbation of the BILF2 enhancer by CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) altered the expression of BILF2 enhancer-linked genes, including BARF0 and BALF2, suggesting that this enhancer regulates the expression of linked genes. H3K27ac ChIP followed by deep sequencing (ChIP-seq) identified several strong EBV enhancers in T/NK (natural killer) lymphoma cells that express type II EBV latency genes. Extensive intragenomic interactions were also found which linked enhancers to target genes. A strong enhancer at BILF2 also looped to the BALF loci. CRISPRi also validated the functional connection between BILF2 enhancer and BARF1 gene. In contrast, H3K27ac HiChIP found significantly fewer intragenomic interactions in type I EBV latency gene-expressing primary effusion lymphoma (PEL) cell lines. These data provided new insight into the regulation of EBV latency gene expression in different EBV-associated tumors. IMPORTANCE EBV is the first human DNA tumor virus identified, discovered over 50 years ago. EBV causes ~200,000 cases of various cancers each year. EBV-encoded oncogenes, noncoding RNAs, and microRNAs (miRNAs) can promote cell growth and survival and suppress senescence. Regulation of EBV gene expression is very complex. The viral C promoter regulates the expression of all EBV nuclear antigens (EBNAs), some of which are very far away from the C promoter. Another way by which the virus activates remote gene expression is through DNA looping. In this study, we describe the viral genome looping patterns in various EBV-associated cancer cell lines and identify important EBV enhancers in these cells. This study also identified novel opportunities to perturb and eventually control EBV gene expression in these cancer cells.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Plásmidos , Latencia del Virus , Línea Celular Tumoral , Elementos de Facilitación Genéticos/genética , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/virología , Antígenos Nucleares del Virus de Epstein-Barr/genética , Herpesvirus Humano 4/genética , Humanos , MicroARNs/metabolismo , Neoplasias/virología , Plásmidos/química , Plásmidos/genética , Plásmidos/metabolismo , Proteínas Virales/genética , Latencia del Virus/genética
16.
Sci Rep ; 12(1): 14753, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36042365

RESUMEN

Juvenile myelomonocytic leukemia (JMML) is a rare heterogeneous hematological malignancy of early childhood characterized by causative RAS pathway mutations. Classifying patients with JMML using global DNA methylation profiles is useful for risk stratification. We implemented machine learning algorithms (decision tree, support vector machine, and naïve Bayes) to produce a DNA methylation-based classification according to recent international consensus definitions using a well-characterized pooled cohort of patients with JMML (n = 128). DNA methylation was originally categorized into three subgroups: high methylation (HM), intermediate methylation (IM), and low methylation (LM), which is a trichotomized classification. We also dichotomized the subgroups as HM/IM and LM. The decision tree model showed high concordances with 450k-based methylation [82.3% (106/128) for the dichotomized and 83.6% (107/128) for the trichotomized subgroups, respectively]. With an independent cohort (n = 72), we confirmed that these models using both the dichotomized and trichotomized classifications were highly predictive of survival. Our study demonstrates that machine learning algorithms can generate clinical parameter-based models that predict the survival outcomes of patients with JMML and high accuracy. These models enabled us to rapidly and effectively identify candidates for augmented treatment following diagnosis.


Asunto(s)
Leucemia Mielomonocítica Juvenil , Teorema de Bayes , Preescolar , Metilación de ADN , Humanos , Leucemia Mielomonocítica Juvenil/genética , Leucemia Mielomonocítica Juvenil/patología , Mutación , Pronóstico
17.
Cell Commun Signal ; 20(1): 95, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35729616

RESUMEN

BACKGROUND: Viruses must adapt to the environment of their host cells to establish infection and persist. Diverse mammalian cells, including virus-infected cells, release extracellular vesicles such as exosomes containing proteins and miRNAs, and use these vesicles to mediate intercellular communication. However, the roles of exosomes in viral infection remain unclear. RESULTS: We screened viral proteins to identify those responsible for the exosome-mediated enhancement of Epstein-Barr virus (EBV) infection. We identified BGLF2 protein encapsulated in exosomes, which were released by EBV-infected cells. BGLF2 protein is a tegument protein that exists in the space between the envelope and nucleocapsid, and it is released into the cytoplasm shortly after infection. BGLF2 protein-containing exosomes enhanced viral gene expression and repressed innate immunity, thereby supporting the EBV infection. CONCLUSIONS: The EBV tegument protein BGLF2 is encapsulated in exosomes and released by infected cells to facilitate the establishment of EBV infection. These findings suggest that tegument proteins support viral infection not only between the envelope and nucleocapsid, as well as in extraviral particles such as exosomes. Video abstract.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Exosomas , Animales , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/metabolismo , Exosomas/metabolismo , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Mamíferos/metabolismo , Proteínas Virales de Fusión , Proteínas Virales
19.
Cancer Sci ; 113(7): 2446-2456, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35485636

RESUMEN

Nasopharyngeal carcinoma (NPC) is caused by infection with Epstein-Barr virus (EBV) and endemic in certain geographic regions. EBV lytic gene, BALF2, closely associates with viral reactivation and BALF2 gene variation, the H-H-H strain, causes NPC in endemic region, southern China. Here, we investigate whether such EBV variations also affect NPC in a non-endemic region, Japan. Viral genome sequencing with 47 EBV isolates of Japanese NPC were performed and compared with those of other EBV-associated diseases from Japan or NPC in Southern China. EBV genomes of Japanese NPC are different from those of other diseases in Japan or endemic NPC; Japanese NPC was not affected by the endemic strain (the BALF2 H-H-H) but frequently carried the type 2 EBV or the strain with intermediate risk of endemic NPC (the BALF2 H-H-L). Seven single nucleotide variations were specifically associated with Japanese NPC, of which six were present in both type 1 and 2 EBV genomes, suggesting the contribution of the type 2 EBV-derived haplotype. This observation was supported by a higher viral titer and stronger viral reactivation in NPC with either type 2 or H-H-L strains. Our results highlight the importance of viral strains and viral reactivation in the pathogenesis of non-endemic NPC.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , China/epidemiología , Infecciones por Virus de Epstein-Barr/complicaciones , Genoma Viral , Herpesvirus Humano 4/genética , Humanos , Carcinoma Nasofaríngeo/patología , Carcinoma Nasofaríngeo/virología , Neoplasias Nasofaríngeas/patología , Neoplasias Nasofaríngeas/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA