Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nat Genet ; 56(9): 1832-1840, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39192095

RESUMEN

Telomeres protect chromosome ends from damage and their length is linked with human disease and aging. We developed a joint telomere length metric, combining quantitative PCR and whole-genome sequencing measurements from 462,666 UK Biobank participants. This metric increased SNP heritability, suggesting that it better captures genetic regulation of telomere length. Exome-wide rare-variant and gene-level collapsing association studies identified 64 variants and 30 genes significantly associated with telomere length, including allelic series in ACD and RTEL1. Notably, 16% of these genes are known drivers of clonal hematopoiesis-an age-related somatic mosaicism associated with myeloid cancers and several nonmalignant diseases. Somatic variant analyses revealed gene-specific associations with telomere length, including lengthened telomeres in individuals with large SRSF2-mutant clones, compared with shortened telomeres in individuals with clonal expansions driven by other genes. Collectively, our findings demonstrate the impact of rare variants on telomere length, with larger effects observed among genes also associated with clonal hematopoiesis.


Asunto(s)
Bancos de Muestras Biológicas , Polimorfismo de Nucleótido Simple , Telómero , Secuenciación Completa del Genoma , Humanos , Telómero/genética , Reino Unido , Secuenciación Completa del Genoma/métodos , Homeostasis del Telómero/genética , Masculino , Femenino , Hematopoyesis Clonal/genética , Estudio de Asociación del Genoma Completo/métodos , Anciano , ADN Helicasas/genética , Persona de Mediana Edad , Biobanco del Reino Unido
2.
Front Immunol ; 13: 998059, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36341326

RESUMEN

Iron is a key element for systemic oxygen delivery and cellular energy metabolism. Thus regulation of systemic and local iron metabolism is key for maintaining energy homeostasis. Significant changes in iron levels due to malnutrition or hemorrhage, have been associated with several diseases such as hemochromatosis, liver cirrhosis and COPD. Macrophages are key cells in regulating iron levels in tissues as they sequester excess iron. How iron overload affects macrophage differentiation and function remains a subject of debate. Here we used an in vitro model of monocyte-to-macrophage differentiation to study the effect of iron overload on macrophage function. We found that providing excess iron as soluble ferric ammonium citrate (FAC) rather than as heme-iron complexes derived from stressed red blood cells (sRBC) interferes with macrophage differentiation and phagocytosis. Impaired macrophage differentiation coincided with increased expression of oxidative stress-related genes. Addition of FAC also led to increased levels of cellular and mitochondrial reactive oxygen species (ROS) and interfered with mitochondrial function and ATP generation. The effects of iron overload were reproduced by the mitochondrial ROS-inducer rotenone while treatment with the ROS-scavenger N-Acetylcysteine partially reversed FAC-induced effects. Finally, we found that iron-induced oxidative stress interfered with upregulation of M-CSFR and MAFB, two crucial determinants of macrophage differentiation and function. In summary, our findings suggest that high levels of non-heme iron interfere with macrophage differentiation by inducing mitochondrial oxidative stress. These findings might be important to consider in the context of diseases like chronic obstructive pulmonary disease (COPD) where both iron overload and defective macrophage function have been suggested to play a role in disease pathogenesis.


Asunto(s)
Sobrecarga de Hierro , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Especies Reactivas de Oxígeno/metabolismo , Monocitos/metabolismo , Sobrecarga de Hierro/metabolismo , Estrés Oxidativo , Hierro/metabolismo , Macrófagos/metabolismo
3.
Respir Res ; 22(1): 234, 2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34429114

RESUMEN

INTRODUCTION: Cigarette smoke triggers many cellular and signaling responses in the lung and the resulting inflammation plays a central role in smoke-related lung diseases, such as COPD. We explored the effects of smoking on the small airway proteome in samples obtained by collection of exhaled particles with the aim to identify specific proteins dysregulated by smoking. METHODS: Exhaled particles were obtained from 38 current smokers, 47 former smokers and 22 healthy controls with the PExA method. 120 ng of sample was collected from individual subjects and analyzed with the SOMAscan proteomics platform. General linear model-based statistics were performed. RESULTS: Two hundred and three proteins were detected in at least half of 107 total samples. Active smoking exerted a significant impact on the protein composition of respiratory tract lining fluid (RTLF), with 81 proteins altered in current smokers compared to never smokers (p < 0.05, q < 0.124). Among the proteins most clearly discriminating between current and never smokers were sRAGE, FSTL3, SPOCK2 and protein S, all of them being less abundant in current smokers. Analysis stratified for sex unveiled sex differences with more pronounced proteomic alterations due to active smoking in females than males. Proteins whose abundance was altered by active smoking in women were to a larger extent related to the complement system. The small airway protein profile of former smokers appeared to be more similar to that observed in never smokers. CONCLUSIONS: The study shows that smoking has a strong impact on protein expression in the small airways, and that smoking affects men and women differently, suggesting PExA sampling combined with high sensitivity protein analysis offers a promising platform for early detection of COPD and identification of novel COPD drug targets.


Asunto(s)
Fumar Cigarrillos/metabolismo , Pulmón/metabolismo , Proteómica/métodos , Caracteres Sexuales , Fumadores , Fumar Tabaco/genética , Fumar Cigarrillos/genética , Fumar Cigarrillos/patología , Estudios de Cohortes , Femenino , Humanos , Pulmón/patología , Masculino , Persona de Mediana Edad , Espirometría/métodos , Fumar Tabaco/metabolismo , Fumar Tabaco/patología
4.
Int J Mol Sci ; 22(6)2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33802979

RESUMEN

Patients with ulcerative colitis (UC) have reduced intestinal levels of short-chain fatty acids (SCFAs), including butyrate, which are important regulators of host-microbiota crosstalk. The aim was therefore to determine effects of butyrate on blood and intestinal T cells from patients with active UC. T cells from UC patients and healthy subjects were polyclonally stimulated together with SCFAs and proliferation, activation, cytokine secretion, and surface expression of cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) were analyzed. Butyrate induced comparable, dose dependent inhibition of activation and proliferation in blood T cells and activation in intestinal T cells from UC patients and healthy subjects. However, surface expression of the inhibitory molecule CTLA-4 on stimulated blood and intestinal T cells was impaired in UC patients and was not restored following butyrate treatment. Furthermore, unlike intestinal T cells from healthy subjects, butyrate was unable to downregulate secretion of interferon gamma (IFNγ), interleukin (IL)-4, IL-17A, and IL-10 in UC patients. Although seemingly normal inhibitory effects on T cell activation and proliferation, butyrate has an impaired ability to reduce cytokine secretion and induce surface expression of CTLA-4 in T cells from UC patients with active disease. Overall, these observations indicate a dysfunction in butyrate induced immune regulation linked to CTLA-4 signaling in T cells from UC patients during a flare.


Asunto(s)
Antígeno CTLA-4/metabolismo , Colitis Ulcerosa/inmunología , Linfocitos T/metabolismo , Adulto , Anciano , Proliferación Celular/efectos de los fármacos , Colitis Ulcerosa/sangre , Colitis Ulcerosa/patología , Citocinas/metabolismo , Citotoxicidad Inmunológica/efectos de los fármacos , Femenino , Humanos , Inflamación/patología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Activación de Linfocitos/efectos de los fármacos , Masculino , Persona de Mediana Edad , Adulto Joven
5.
Eur Respir J ; 58(4)2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33766947

RESUMEN

BACKGROUND: Interleukin (IL)-6 trans-signalling (IL-6TS) is emerging as a pathogenic mechanism in chronic respiratory diseases; however, the drivers of IL-6TS in the airways and the phenotypic characteristic of patients with increased IL-6TS pathway activation remain poorly understood. OBJECTIVE: Our aim was to identify and characterise COPD patients with increased airway IL-6TS and to elucidate the biological drivers of IL-6TS pathway activation. METHODS: We used an IL-6TS-specific sputum biomarker profile (soluble IL-6 receptor (sIL-6R), IL-6, IL-1ß, IL-8, macrophage inflammatory protein-1ß) to stratify sputum data from patients with COPD (n=74; Biomarkers to Target Antibiotic and Systemic Corticosteroid Therapy in COPD Exacerbation (BEAT-COPD)) by hierarchical clustering. The IL-6TS signature was related to clinical characteristics and sputum microbiome profiles. The induction of neutrophil extracellular trap formation (NETosis) and IL-6TS by Haemophilus influenzae were studied in human neutrophils. RESULTS: Hierarchical clustering revealed an IL-6TS-high subset (n=24) of COPD patients, who shared phenotypic traits with an IL-6TS-high subset previously identified in asthma. The subset was characterised by increased sputum cell counts (p=0.0001), persistent sputum neutrophilia (p=0.0004), reduced quality of life (Chronic Respiratory Questionnaire total score; p=0.008), and increased levels of pro-inflammatory mediators and matrix metalloproteinases in sputum. IL-6TS-high COPD patients showed an increase in Proteobacteria, with Haemophilus as the dominating genus. NETosis induced by H. influenzae was identified as a potential mechanism for increased sIL-6R levels. This was supported by a significant positive correlation between sIL-6R and NETosis markers in bronchoalveolar lavage fluid from COPD patients. CONCLUSION: IL-6TS pathway activation due to chronic colonisation with Haemophilus may be an important disease driver in a subset of COPD patients.


Asunto(s)
Trampas Extracelulares , Infecciones por Haemophilus , Enfermedad Pulmonar Obstructiva Crónica , Infecciones por Haemophilus/complicaciones , Humanos , Interleucina-6 , Calidad de Vida , Esputo
6.
Commun Biol ; 4(1): 392, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33758299

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a fatal disorder characterised by progressive, destructive lung scarring. Despite substantial progress, the genetic determinants of this disease remain incompletely defined. Using whole genome and whole exome sequencing data from 752 individuals with sporadic IPF and 119,055 UK Biobank controls, we performed a variant-level exome-wide association study (ExWAS) and gene-level collapsing analyses. Our variant-level analysis revealed a novel association between a rare missense variant in SPDL1 and IPF (NM_017785.5:g.169588475 G > A p.Arg20Gln; p = 2.4 × 10-7, odds ratio = 2.87, 95% confidence interval: 2.03-4.07). This signal was independently replicated in the FinnGen cohort, which contains 1028 cases and 196,986 controls (combined p = 2.2 × 10-20), firmly associating this variant as an IPF risk allele. SPDL1 encodes Spindly, a protein involved in mitotic checkpoint signalling during cell division that has not been previously described in fibrosis. To the best of our knowledge, these results highlight a novel mechanism underlying IPF, providing the potential for new therapeutic discoveries in a disease of great unmet need.


Asunto(s)
Proteínas de Ciclo Celular/genética , Fibrosis Pulmonar Idiopática/genética , Mutación Missense , Anciano , Estudios de Casos y Controles , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Fibrosis Pulmonar Idiopática/diagnóstico , Masculino , Fenotipo , Secuenciación del Exoma
7.
Atherosclerosis ; 313: 70-75, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33032235

RESUMEN

BACKGROUND AND AIMS: The aim of the study was to determine potential associations between endothelial dysfunction and arterial stiffness, measured by peripheral arterial tonometry, and coronary artery calcium score (CACS) assessed by computed tomography (CT). METHODS AND RESULTS: The BIG3 study is a prospective longitudinal, non-interventional, pulmonary-cardiovascular cohort study exploring the three major smoking-induced diseases: cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer, in a 45-75 aged cohort (mean 62 years), enriched in smokers. Computed tomography of the chest with assessment of CACS was performed in a selected subset of the participants (n = 2080). Peripheral arterial tonometry (EndoPAT) was used to assess endothelial function and arterial stiffness measured as reactive hyperaemia index (RHI) and augmentation index (AI), respectively. We observed significant associations of CACS, endothelial dysfunction, and arterial stiffness with several risk factors for coronary heart disease including age, sex, BMI, diabetes mellitus, and blood pressure. There was significant association of CACS, classified into three levels of severity, with RHI and AI (p = 0.0005 and p = 0.0009, respectively). For groups of increasing CACS (0, 1-400 and > 400 Agatston score), RHI decreased from median 1.89 (1.58-2.39), and 1.93 (1.62-2.41) to 1.77 (1.51-2.10). AI increased from median 14.3 (5.7-25.2), and 16.4 (8.1-27.6) to 18.0 (9.1-29.2). RHI, but not AI, remained significantly associated with CACS after risk factors adjustment. CONCLUSIONS: In this large study of coronary artery calcium and vascular function, we found an association between CACS and both endothelial dysfunction and arterial stiffness, indicating that they may reflect similar mechanisms for development of cardiovascular disease.


Asunto(s)
Enfermedad de la Arteria Coronaria , Rigidez Vascular , Anciano , Calcio , Estudios de Cohortes , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Endotelio Vascular , Factores de Intercambio de Guanina Nucleótido , Humanos , Estudios Prospectivos , Factores de Riesgo
8.
Sci Rep ; 9(1): 10060, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31296897

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a debilitating lung disease that is currently the third leading cause of death worldwide. Recent reports have indicated that dysfunctional iron handling in the lungs of COPD patients may be one contributing factor. However, a number of these studies have been limited to the qualitative assessment of iron levels through histochemical staining or to the expression levels of iron-carrier proteins in cells or bronchoalveolar lavage fluid. In this study, we have used time of flight secondary ion mass spectrometry (ToF-SIMS) to visualize and relatively quantify iron accumulation in lung tissue sections of healthy donors versus severe COPD patients. An IONTOF 5 instrument was used to perform the analysis, and further multivariate analysis was used to analyze the data. An orthogonal partial least squares discriminant analysis (OPLS-DA) score plot revealed good separation between the two groups. This separation was primarily attributed to differences in iron content, as well as differences in other chemical signals possibly associated with lipid species. Further, relative quantitative analysis revealed twelve times higher iron levels in lung tissue sections of COPD patients when compared to healthy donors. In addition, iron accumulation observed within the cells was heterogeneously distributed, indicating cellular compartmentalization.


Asunto(s)
Hierro/metabolismo , Pulmón/metabolismo , Macrófagos/patología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Espectrometría de Masa de Ion Secundario/métodos , Análisis Discriminante , Humanos , Pulmón/patología , Enfermedad Pulmonar Obstructiva Crónica/patología
9.
J Cell Sci ; 132(7)2019 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-30837284

RESUMEN

NF-κB-inducing kinase (NIK; also known as MAP3K14) is a central regulator of non-canonical NF-κB signaling in response to stimulation of TNF receptor superfamily members, such as the lymphotoxin-ß receptor (LTßR), and is implicated in pathological angiogenesis associated with chronic inflammation and cancer. Here, we identify a previously unrecognized role of the LTßR-NIK axis during inflammatory activation of human endothelial cells (ECs). Engagement of LTßR-triggered canonical and non-canonical NF-κB signaling promoted expression of inflammatory mediators and adhesion molecules, and increased immune cell adhesion to ECs. Sustained LTßR-induced inflammatory activation of ECs was NIK dependent, but independent of p100, indicating that the non-canonical arm of NF-κB is not involved. Instead, prolonged activation of canonical NF-κB signaling, through the interaction of NIK with IκB kinase α and ß (also known as CHUK and IKBKB, respectively), was required for the inflammatory response. Endothelial inflammatory activation induced by synovial fluid from rheumatoid arthritis patients was significantly reduced by NIK knockdown, suggesting that NIK-mediated alternative activation of canonical NF-κB signaling is a key driver of pathological inflammatory activation of ECs. Targeting NIK could thus provide a novel approach for treating chronic inflammatory diseases.


Asunto(s)
Células Endoteliales/metabolismo , Receptor beta de Linfotoxina/metabolismo , FN-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Línea Celular , Células Cultivadas , Endotelio/metabolismo , Regulación de la Expresión Génica , Humanos , FN-kappa B/genética , Neovascularización Patológica/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Quinasa de Factor Nuclear kappa B
10.
J Allergy Clin Immunol ; 143(2): 577-590, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29902480

RESUMEN

BACKGROUND: Although several studies link high levels of IL-6 and soluble IL-6 receptor (sIL-6R) to asthma severity and decreased lung function, the role of IL-6 trans-signaling (IL-6TS) in asthmatic patients is unclear. OBJECTIVE: We sought to explore the association between epithelial IL-6TS pathway activation and molecular and clinical phenotypes in asthmatic patients. METHODS: An IL-6TS gene signature obtained from air-liquid interface cultures of human bronchial epithelial cells stimulated with IL-6 and sIL-6R was used to stratify lung epithelial transcriptomic data (Unbiased Biomarkers in Prediction of Respiratory Disease Outcomes [U-BIOPRED] cohorts) by means of hierarchical clustering. IL-6TS-specific protein markers were used to stratify sputum biomarker data (Wessex cohort). Molecular phenotyping was based on transcriptional profiling of epithelial brushings, pathway analysis, and immunohistochemical analysis of bronchial biopsy specimens. RESULTS: Activation of IL-6TS in air-liquid interface cultures reduced epithelial integrity and induced a specific gene signature enriched in genes associated with airway remodeling. The IL-6TS signature identified a subset of patients with IL-6TS-high asthma with increased epithelial expression of IL-6TS-inducible genes in the absence of systemic inflammation. The IL-6TS-high subset had an overrepresentation of frequent exacerbators, blood eosinophilia, and submucosal infiltration of T cells and macrophages. In bronchial brushings Toll-like receptor pathway genes were upregulated, whereas expression of cell junction genes was reduced. Sputum sIL-6R and IL-6 levels correlated with sputum markers of remodeling and innate immune activation, in particular YKL-40, matrix metalloproteinase 3, macrophage inflammatory protein 1ß, IL-8, and IL-1ß. CONCLUSIONS: Local lung epithelial IL-6TS activation in the absence of type 2 airway inflammation defines a novel subset of asthmatic patients and might drive airway inflammation and epithelial dysfunction in these patients.


Asunto(s)
Asma/inmunología , Biomarcadores/metabolismo , Células Epiteliales/fisiología , Inflamación/inmunología , Interleucina-6/metabolismo , Pulmón/fisiología , Esputo/metabolismo , Adulto , Remodelación de las Vías Aéreas (Respiratorias) , Células Cultivadas , Estudios de Cohortes , Estudios Transversales , Regulación de la Expresión Génica , Humanos , Masculino , Fenotipo , Receptores de Interleucina-6/metabolismo , Hipersensibilidad Respiratoria , Transducción de Señal , Transcriptoma
11.
Artículo en Inglés | MEDLINE | ID: mdl-29864380

RESUMEN

INTRODUCTION: Proteinases with a disintegrin and a metalloproteinase domain (ADAMs) have not been well studied in COPD. We investigated whether ADAM9 is linked to COPD in humans and mice. METHODS: ADAM9 blood and lung levels were measured in COPD patients versus controls, and air- versus cigarette smoke (CS)-exposed wild-type (WT) mice. WT and Adam9-/- mice were exposed to air or CS for 1-6 months, and COPD-like lung pathologies were measured. RESULTS: ADAM9 staining was increased in lung epithelial cells and macrophages in smokers and even more so in COPD patients and correlated directly with pack-year smoking history and inversely with airflow obstruction and/or FEV1 % predicted. Bronchial epithelial cell ADAM9 mRNA levels were higher in COPD patients than controls and correlated directly with pack-year smoking history. Plasma, BALF and sputum ADAM9 levels were similar in COPD patients and controls. CS exposure increased Adam9 levels in WT murine lungs. Adam9-/- mice were protected from emphysema development, small airway fibrosis, and airway mucus metaplasia. CS-exposed Adam9-/- mice had reduced lung macrophage counts, alveolar septal cell apoptosis, lung elastin degradation, and shedding of VEGFR2 and EGFR in BALF samples. Recombinant ADAM9 sheds EGF and VEGF receptors from epithelial cells to reduce activation of the Akt pro-survival pathway and increase cellular apoptosis. CONCLUSIONS: ADAM9 levels are increased in COPD lungs and linked to key clinical variables. Adam9 promotes emphysema development, and large and small airway disease in mice. Inhibition of ADAM9 could be a therapeutic approach for multiple COPD phenotypes.

12.
Am J Respir Crit Care Med ; 198(10): 1254-1267, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29750543

RESUMEN

RATIONALE: ADAM8 (a disintegrin and metalloproteinase domain-8) is expressed by leukocytes and epithelial cells in health, but its contribution to the pathogenesis of chronic obstructive pulmonary disease (COPD) is unknown. OBJECTIVES: To determine whether the expression of ADAM8 is increased in the lungs of patients with COPD and cigarette smoke (CS)-exposed mice, and whether ADAM8 promotes the development of COPD. METHODS: ADAM8 levels were measured in lung, sputum, plasma, and/or BAL fluid samples from patients with COPD, smokers, and nonsmokers, and wild-type (WT) mice exposed to CS versus air. COPD-like lung pathologies were compared in CS-exposed WT versus Adam8-/- mice. MEASUREMENTS AND MAIN RESULTS: ADAM8 immunostaining was reduced in macrophages, and alveolar and bronchial epithelial cells in the lungs of patients with COPD versus control subjects, and CS- versus air-exposed WT mice. ADAM8 levels were similar in plasma, sputum, and BAL fluid samples from patients with COPD and control subjects. CS-exposed Adam8-/- mice had greater airspace enlargement and airway mucus cell metaplasia than WT mice, but similar small airway fibrosis. CS-exposed Adam8-/- mice had higher lung macrophage counts, oxidative stress levels, and alveolar septal cell death rates, but lower alveolar septal cell proliferation rates and soluble epidermal growth factor receptor BAL fluid levels than WT mice. Adam8 deficiency increased lung inflammation by reducing CS-induced activation of the intrinsic apoptosis pathway in macrophages. Human ADAM8 proteolytically shed the epidermal growth factor receptor from bronchial epithelial cells to reduce mucin expression in vitro. Adam8 bone marrow chimera studies revealed that Adam8 deficiency in leukocytes and lung parenchymal cells contributed to the exaggerated COPD-like disease in Adam8-/- mice. CONCLUSIONS: Adam8 deficiency increases CS-induced lung inflammation, emphysema, and airway mucus cell metaplasia. Strategies that increase or prolong ADAM8's expression in the lung may have therapeutic efficacy in COPD.


Asunto(s)
Proteínas ADAM/genética , Antígenos CD/genética , Proteínas de la Membrana/genética , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Anciano , Animales , Fumar Cigarrillos/fisiopatología , Modelos Animales de Enfermedad , Femenino , Humanos , Pulmón/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad
13.
Rheumatology (Oxford) ; 56(2): 294-302, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27864565

RESUMEN

OBJECTIVE: Angiogenesis is crucial in RA disease progression. Lymphotoxin ß receptor (LTßR)-induced activation of the non-canonical nuclear factor-κB (NF-κB) pathway via NF-κB-inducing kinase (NIK) has been implicated in this process. Consequently, inhibition of this pathway may hold therapeutic potential in RA. We describe a novel three-dimensional (3D) model of synovial angiogenesis incorporating endothelial cells (ECs), RA fibroblast-like synoviocytes (RAFLSs) and RA synovial fluid (RASF) to further investigate the contributions of NF-κB in this process. METHODS: Spheroids consisting of RAFLSs and ECs were stimulated with RASF, the LTßR ligands LTß and LIGHT, or growth factor bFGF and VEGF, followed by quantification of EC sprouting using confocal microscopy and digital image analysis. Next, the effects of anginex, NIK-targeting siRNA (siNIK), LTßR-Ig fusion protein (baminercept) and a novel pharmacological NIK inhibitor were investigated. RESULTS: RASF significantly promoted sprout formation, which was blocked by the established angiogenesis inhibitor anginex (P < 0.05). LTß and LIGHT induced significant sprouting (P < 0.05), as did bFGF/VEGF (P < 0.01). siNIK pre-treatment of ECs led to reductions in LTßR-induced vessel formation (P < 0.05). LTßR-Ig not only blocked LTß- or LIGHT-induced sprouting, but also RASF-induced sprouting (P < 0.05). The NIK inhibitor blocked angiogenesis induced by LTß, LIGHT, growth factors (P < 0.05) and RASF (P < 0.01). CONCLUSION: We present a novel 3D model of synovial angiogenesis incorporating RAFLSs, ECs and RASF that mimics the in vivo situation. Using this system, we demonstrate that non-canonical NF-κB signalling promotes neovascularization and show that this model is useful for dissecting relative contributions of signalling pathways in specific cell types to angiogenic responses and for testing pharmacological inhibitors of angiogenesis.


Asunto(s)
Células Endoteliales/efectos de los fármacos , FN-kappa B/metabolismo , Neovascularización Patológica/metabolismo , Sinoviocitos/efectos de los fármacos , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Células Cultivadas , Células Endoteliales/metabolismo , Células Endoteliales/patología , Factores de Crecimiento de Fibroblastos/farmacología , Humanos , Receptor beta de Linfotoxina , Linfotoxina beta/farmacología , Microscopía Confocal , Neovascularización Patológica/patología , Péptidos/farmacología , Proteínas Serina-Treonina Quinasas/genética , ARN Interferente Pequeño , Proteínas Recombinantes de Fusión/farmacología , Transducción de Señal , Líquido Sinovial , Membrana Sinovial/metabolismo , Membrana Sinovial/patología , Sinoviocitos/metabolismo , Sinoviocitos/patología , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/farmacología , Factor A de Crecimiento Endotelial Vascular/farmacología , Quinasa de Factor Nuclear kappa B
14.
Expert Rev Respir Med ; 9(2): 153-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25586213

RESUMEN

Chronic obstructive pulmonary disease (COPD) is characterized by sustained inflammation of the airways, leading to destruction of lung tissue and declining pulmonary function. Although smoking is the most obvious risk factor for COPD, only about 20% of smokers develop COPD and smoking cessation does not reverse progression of COPD, indicating that while smoking is an important cause or initiating factor, it is not the only driver of ongoing chronic inflammation and disease progression in COPD patients. We hypothesize that smoking-induced changes in lung microbiota, epithelial integrity and epigenetic control of gene expression result in autoantigen induction and perturbed immune regulation in genetically vunerable individuals. In our view, COPD patients may be stratified according to their immunological and inflammatory status related to specific changes in the lung microbiota (innate and adaptive immunity), presence of autoantigens (adaptive immunity: Th1-B-cell axis) and epigenetic modifications (inflammation and structural changes).


Asunto(s)
Interacción Gen-Ambiente , Pulmón , Microbiota , Enfermedad Pulmonar Obstructiva Crónica/etiología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Fumar/efectos adversos , Inmunidad Adaptativa , Epigénesis Genética , Predisposición Genética a la Enfermedad , Estado de Salud , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Pulmón/inmunología , Pulmón/microbiología , Pulmón/fisiopatología , Fenotipo , Valor Predictivo de las Pruebas , Pronóstico , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Enfermedad Pulmonar Obstructiva Crónica/microbiología , Factores de Riesgo , Índice de Severidad de la Enfermedad , Fumar/genética , Fumar/inmunología , Fumar/fisiopatología
15.
Bioorg Med Chem Lett ; 20(16): 4738-40, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20643547
16.
Anal Biochem ; 313(2): 234-45, 2003 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-12605860

RESUMEN

We describe a novel approach to quantitation of phosphoinositides in cell extracts and in vitro enzyme-catalyzed reactions using suitably tagged and/or labeled pleckstrin homology (PH) domains as probes. Stable complexes were formed between the biotinylated target lipid and an appropriate PH domain, and phosphoinositides present in samples were detected by their ability to compete for binding to the PH domain. Complexes were detected using AlphaScreen technology or time-resolved FRET. The assay procedure was validated using recombinant PI 3-kinase gamma with diC8PtdIns(4,5)P(2) as substrate and general receptor for phosphoinositides-1 (GRP1) PH domain as a PtdIns(3,4,5)P(3)-specific probe. This PI 3-kinase assay was robust, was suitable for high-throughput screening platforms, and delivered expected IC(50) values for reference compounds. The approach is adaptable to a wide range of enzymes as demonstrated by assays of the tumor suppressor protein, PTEN, a phosphoinositide 3-phosphatase, which was measured using the same reagents but with diC8PtdIns(3,4,5)P(3) as substrate. PtdIns(3,4,5)P(3) present in lipid extracts of Swiss 3T3 and HL60 cells stimulated with platelet-derived growth factor and fMLP, respectively, was also detectable at picomole sensitivity. The versatility and general utility of this approach were demonstrated by exchanging the GRP1 PH domain for that of TAPP1 (which binds PtdIns(3,4)P(2) and not PtdIns(3,4,5)P(3)). This system was used to monitor the accumulation of PtdIns(3,4)P(2) in Swiss 3T3 cells exposed to an oxidative stress. It is therefore proposed that similar procedures should be capable of measuring any known phosphoinositide present in cell and tissue extracts or produced in kinase and phosphatase assays by using one of several well-characterized protein domains with appropriate phosphoinositide-binding specificity.


Asunto(s)
Fosfatidilinositol 3-Quinasas/análisis , Fosfatidilinositoles/análisis , Fosfoproteínas Fosfatasas/análisis , Células 3T3 , Animales , Unión Competitiva , Biotina/química , Extractos Celulares/análisis , Inhibidores Enzimáticos/farmacología , Transferencia Resonante de Energía de Fluorescencia/métodos , Células HL-60 , Humanos , Ratones , Estrés Oxidativo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositoles/aislamiento & purificación , Fosfatidilinositoles/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosfoproteínas Fosfatasas/metabolismo , Fosfoproteínas/química , Estructura Terciaria de Proteína , Proteínas Recombinantes/análisis , Proteínas Recombinantes/metabolismo , Transducción de Señal , Colato de Sodio/farmacología , Extractos de Tejidos/análisis , Extractos de Tejidos/metabolismo , Proteínas Supresoras de Tumor/análisis , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA