Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Chem Inf Model ; 64(14): 5691-5700, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38946265

RESUMEN

The Caspase-based fusion protein technology (CASPON) allows for universal cleavage of fusion tags from proteins of interest to reconstitute the native N-terminus. While the CASPON enzyme has been optimized to be promiscuous against a diversity of N-terminal peptides, the cleavage efficacy for larger proteins can be surprisingly low. We develop an efficient means to rationalize and predict the cleavage efficiency based on a structural representation of the intrinsically disordered N-terminal peptides and their putative interactions with the CASPON enzyme. The number of favorably interacting N-terminal conformations shows a very good agreement with the experimentally observed cleavage efficiency, in agreement with a conformational selection model. The method relies on computationally cheap molecular dynamics simulations to efficiently generate a diverse collection of N-terminal conformations, followed by a simple fitting procedure into the CASPON enzyme. It can be readily used to assess the CASPON cleavability a priori.


Asunto(s)
Simulación de Dinámica Molecular , Conformación Proteica , Caspasas/metabolismo , Caspasas/química , Especificidad por Sustrato , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Péptidos/química , Péptidos/metabolismo
2.
Glycobiology ; 34(4)2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38366999

RESUMEN

The glycoprotein-N-acetylgalactosamine ß1,3-galactosyltransferase, known as T-synthase (EC 2.4.1.122), plays a crucial role in the synthesis of the T-antigen, which is the core 1 O-glycan structure. This enzyme transfers galactose from UDP-Gal to GalNAc-Ser/Thr. The T-antigen has significant functions in animal development, immune response, and recognition processes. Molluscs are a successful group of animals that inhabit various environments, such as freshwater, marine, and terrestrial habitats. They serve important roles in ecosystems as filter feeders and decomposers but can also be pests in agriculture and intermediate hosts for human and cattle parasites. The identification and characterization of novel carbohydrate active enzymes, such as T-synthase, can aid in the understanding of molluscan glycosylation abilities and their adaptation and survival abilities. Here, the T-synthase enzymes from the snail Pomacea canaliculata and the oyster Crassostrea gigas are identified, cloned, expressed, and characterized, with a focus on structural elucidation. The synthesized enzymes display core 1 ß1,3-galactosyltransferase activity using pNP-α-GalNAc as substrate and exhibit similar biochemical parameters as previously characterised T-synthases from other species. While the enzyme from C. gigas shares the same structural parameters with the other enzymes characterised so far, the T-synthase from P. canaliculata lacks the consensus sequence CCSD, which was previously considered indispensable.


Asunto(s)
Ecosistema , Galactosiltransferasas , Animales , Humanos , Bovinos , Secuencia de Aminoácidos , Galactosiltransferasas/metabolismo , Clonación Molecular , Moluscos/metabolismo , Antígenos Virales de Tumores
3.
J Chem Theory Comput ; 19(18): 6521-6531, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37649349

RESUMEN

Molecular dynamics simulations often struggle to obtain sufficient sampling to study complex molecular events due to high energy barriers separating the minima of interest. Multiple enhanced sampling techniques have been developed and improved over the years to tackle this issue. Gaussian accelerated molecular dynamics (GaMD) is a recently developed enhanced sampling technique that works by adding a biasing potential, lifting the energy landscape up, and decreasing the height of its barriers. GaMD allows one to increase the sampling of events of interest without the need of a priori knowledge of the system or the relevant coordinates. All required acceleration parameters can be obtained from a previous search run. Upon its development, several improvements for the methodology have been proposed, among them selective GaMD in which the boosting potential is selectively applied to the region of interest. There are currently four selective GaMD methods that have shown promising results. However, all of these methods are constrained on the number, location, and scenarios in which this selective boosting potential can be applied to ligands, peptides, or protein-protein interactions. In this work, we showcase a GROMOS implementation of the GaMD methodology with a fully flexible selective GaMD approach that allows the user to define, in a straightforward way, multiple boosting potentials for as many regions as desired. We show and analyze the advantages of this flexible selective approach on two previously used test systems, the alanine dipeptide and the chignolin peptide, and extend these examples to study its applicability and potential to study conformational changes of glycans and glycosylated proteins.


Asunto(s)
Simulación de Dinámica Molecular , Péptidos , Termodinámica , Dipéptidos/química
4.
Biochemistry ; 61(19): 2049-2062, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36148499

RESUMEN

The epidermal growth factor receptor (EGFR) is frequently mutated in human cancer, most notably non-small-cell lung cancer and glioblastoma. While many frequently occurring EGFR mutations are known to confer constitutive EGFR activation, the situation is less clear for rarely detected variants. In fact, more than 1000 distinct EGFR mutations are listed in the Catalogue of Somatic Mutations in Cancer (COSMIC), but for most of them, the functional consequence is unknown. To identify additional, previously unknown activating mutations in EGFR, we screened a randomly mutated EGFR library for constitutive EGFR phosphorylation using a recently developed high-throughput approach termed PhosphoFlowSeq. Enrichment of the well-known activating mutations S768I, T790M, and L858R validated the experimental approach. Importantly, we also identified the activating mutations S442I and L658Q located in the extracellular and transmembrane domains of EGFR, respectively. To the best of our knowledge, neither S442I nor L658Q has been associated with an activating phenotype before. However, both have been detected in cancer samples. Interestingly, molecular dynamics (MD) simulations suggest that the L658Q mutation located in the hydrophobic transmembrane region forms intermolecular hydrogen bonds, thereby promoting EGFR dimerization and activation. Based on these findings, we screened the COSMIC database for additional hydrophilic mutations in the EGFR transmembrane region and indeed detected moderate constitutive activation of EGFR-G652R. Together, this study demonstrates that unbiased screening for activating mutations in EGFR not only yields well-established substitutions located in the kinase domain but also activating mutations in other regions of EGFR, including the extracellular and transmembrane domains.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/genética , Mutación , Inhibidores de Proteínas Quinasas
5.
J Comput Aided Mol Des ; 35(10): 1067-1079, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34617191

RESUMEN

Falcipain-2 (FP-2) is a Plasmodium falciparum hemoglobinase widely targeted in the search for antimalarials. FP-2 can be allosterically modulated by various noncompetitive inhibitors that have been serendipitously identified. Moreover, the crystal structures of two inhibitors bound to an allosteric site, termed site 6, of the homolog enzyme human cathepsin K (hCatK) suggest that the equivalent region in FP-2 might play a similar role. Here, we conduct the rational identification of FP-2 inhibitors through virtual screenings (VS) of compounds into several pocket-like conformations of site 6, sampled during molecular dynamics (MD) simulations of the free enzyme. Two noncompetitive inhibitors, ZINC03225317 and ZINC72290660, were confirmed using in vitro enzymatic assays and their poses into site 6 led to calculated binding free energies matching the experimental ones. Our results provide strong evidence about the allosteric inhibition of FP-2 through binding of small molecules to site 6, thus opening the way toward the discovery of new inhibitors against this enzyme.


Asunto(s)
Antimaláricos/farmacología , Simulación por Computador , Cisteína Endopeptidasas/química , Inhibidores de Cisteína Proteinasa/farmacología , Plasmodium falciparum/efectos de los fármacos , Sitio Alostérico , Antimaláricos/química , Inhibidores de Cisteína Proteinasa/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Plasmodium falciparum/enzimología , Unión Proteica , Relación Estructura-Actividad
6.
J Biol Chem ; 297(4): 101095, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34418435

RESUMEN

Proteases serve as important tools in biotechnology and as valuable drugs or drug targets. Efficient protein engineering methods to study and modulate protease properties are thus of great interest for a plethora of applications. We established PROFICS (PRotease Optimization via Fusion-Inhibited Carbamoyltransferase-based Selection), a bacterial selection system, which enables the optimization of proteases for biotechnology, therapeutics or diagnosis in a simple overnight process. During the PROFICS process, proteases are selected for their ability to specifically cut a tag from a reporter enzyme and leave a native N-terminus. Precise and efficient cleavage after the recognition sequence reverses the phenotype of an Escherichia coli knockout strain deficient in an essential enzyme of pyrimidine synthesis. A toolbox was generated to select for proteases with different preferences for P1' residues (the residue immediately following the cleavage site). The functionality of PROFICS is demonstrated with viral proteases and human caspase-2. PROFICS improved caspase-2 activity up to 25-fold after only one round of mutation and selection. Additionally, we found a significantly improved tolerance for all P1' residues caused by a mutation in a substrate interaction site. We showed that this improved activity enables cells containing the new variant to outgrow cells containing all other mutants, facilitating its straightforward selection. Apart from optimizing enzymatic activity and P1' tolerance, PROFICS can be used to reprogram specificities, erase off-target activity, optimize expression via tags/codon usage, or even to screen for potential drug-resistance-conferring mutations in therapeutic targets such as viral proteases in an unbiased manner.


Asunto(s)
Caspasa 2 , Cisteína Endopeptidasas , Evolución Molecular Dirigida , Escherichia coli , Ingeniería de Proteínas , Caspasa 2/biosíntesis , Caspasa 2/química , Caspasa 2/genética , Cisteína Endopeptidasas/biosíntesis , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/genética , Escherichia coli/enzimología , Escherichia coli/genética , Humanos
7.
Cancers (Basel) ; 13(1)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33375020

RESUMEN

To improve cancer immunotherapy, a clearer understanding of key targets such as the immune checkpoint receptor PD-1 is essential. The PD-1 inhibitors nivolumab and pembrolizumab were recently approved by the FDA. The CC'-loop of PD-1 has been identified as a hotspot for drug targeting. Here, we investigate the influence of nivolumab and pembrolizumab on the molecular motion of the CC'-loop of PD-1. We performed molecular dynamics simulations on the complete extracellular domain of PD-1, in complex with PD-L1, and the blocking antibodies nivolumab and pembrolizumab. Conformations of the CC'-loop were analyzed unsupervised with the Daura et al. clustering algorithm and multidimensional scaling. Surprisingly, two conformations found were seen to correspond to the 'open' and 'closed' conformation of CC'-loop in apo-PD-1, already known from literature. Unsupervised clustering also surprisingly reproduced the natural ligand, PD-L1, exclusively stabilizing the 'closed' conformation, as also known from literature. Nivolumab, like PD-L1, was found to shift the equilibrium towards the 'closed' conformation, in accordance with the conformational selection model. Pembrolizumab, on the other hand, induced a third conformation of the CC'-loop which has not been described to date: Relative to the conformation 'open' the, CC'-loop turned 180° to form a new conformation which we called 'overturned'. We show that the combination of clustering and multidimensional scaling is a fast, easy, and powerful method in analyzing structural changes in proteins. Possible refined antibodies or new small molecular compounds could utilize the flexibility of the CC'-loop to improve immunotherapy.

8.
Biomolecules ; 10(12)2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33255244

RESUMEN

Caspase-2 is the most specific protease of all caspases and therefore highly suitable as tag removal enzyme creating an authentic N-terminus of overexpressed tagged proteins of interest. The wild type human caspase-2 is a dimer of heterodimers generated by autocatalytic processing which is required for its enzymatic activity. We designed a circularly permuted caspase-2 (cpCasp2) to overcome the drawback of complex recombinant expression, purification and activation, cpCasp2 was constitutively active and expressed as a single chain protein. A 22 amino acid solubility tag and an optimized fermentation strategy realized with a model-based control algorithm further improved expression in Escherichia coli and 5.3 g/L of cpCasp2 in soluble form were obtained. The generated protease cleaved peptide and protein substrates, regardless of N-terminal amino acid with high activity and specificity. Edman degradation confirmed the correct N-terminal amino acid after tag removal, using Ubiquitin-conjugating enzyme E2 L3 as model substrate. Moreover, the generated enzyme is highly stable at -20 °C for one year and can undergo 25 freeze/thaw cycles without loss of enzyme activity. The generated cpCasp2 possesses all biophysical and biochemical properties required for efficient and economic tag removal and is ready for a platform fusion protein process.


Asunto(s)
Caspasa 2/biosíntesis , Cisteína Endopeptidasas/biosíntesis , Escherichia coli/química , Proteínas Recombinantes de Fusión/biosíntesis , Caspasa 2/aislamiento & purificación , Caspasa 2/metabolismo , Clonación Molecular , Cisteína Endopeptidasas/aislamiento & purificación , Cisteína Endopeptidasas/metabolismo , Escherichia coli/metabolismo , Humanos , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo
9.
BMC Bioinformatics ; 21(Suppl 17): 557, 2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33308148

RESUMEN

BACKGROUND: The immune checkpoint receptor programmed cell death protein I (PD-1) has been identified as a key target in immunotherapy. PD-1 reduces the risk of autoimmunity by inducing apoptosis in antigen-specific T cells upon interaction with programmed cell death protein ligand I (PD-L1). Various cancer types overexpress PD-L1 to evade the immune system by inducing apoptosis in tumor-specific CD8+ T cells. The clinically used blocking antibody nivolumab binds to PD-1 and inhibits the immunosuppressive interaction with PD-L1. Even though PD-1 is already used as a drug target, the exact mechanism of the receptor is still a matter of debate. For instance, it is hypothesized that the signal transduction is based on an active conformation of PD-1. RESULTS: Here we present the results of the first molecular dynamics simulations of PD-1 with a complete extracellular domain with a focus on the role of the BC-loop of PD-1 upon binding PD-L1 or nivolumab. We could demonstrate that the BC-loop can form three conformations. Nivolumab binds to the BC-loop according to the conformational selection model whereas PD-L1 induces allosterically a conformational change of the BC-loop. CONCLUSION: Due to the structural differences of the BC-loop, a signal transduction based on active conformation cannot be ruled out. These findings will have an impact on drug design and will help to refine immunotherapy blocking antibodies.


Asunto(s)
Antígeno B7-H1/química , Simulación de Dinámica Molecular , Nivolumab/inmunología , Receptor de Muerte Celular Programada 1/química , Anticuerpos Monoclonales/inmunología , Antígeno B7-H1/metabolismo , Análisis por Conglomerados , Humanos , Enlace de Hidrógeno , Ligandos , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Unión Proteica , Dominios Proteicos
10.
Proteins ; 88(10): 1303-1318, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32432825

RESUMEN

The N-terminal cleavage of fusion tags to restore the native N-terminus of recombinant proteins is a challenging task and up to today, protocols need to be optimized for different proteins individually. Within this work, we present a novel protease that was designed in-silico to yield enhanced promiscuity toward different N-terminal amino acids. Two mutations in the active-site amino acids of human Caspase-2 were determined to increase the recognition of branched amino-acids, which show only poor binding capabilities in the unmutated protease. These mutations were determined by sequential and structural comparisons of Caspase-2 and Caspase-3 and their effect was additionally predicted using free-energy calculations. The two mutants proposed in the in-silico studies were expressed and in-vitro experiments confirmed the simulation results. Both mutants showed not only enhanced activities toward branched amino acids, but also smaller, unbranched amino acids. We believe that the created mutants constitute an important step toward generalized procedures to restore original N-termini of recombinant fusion proteins.


Asunto(s)
Aminoácidos de Cadena Ramificada/química , Caspasa 2/química , Caspasa 3/química , Cisteína Endopeptidasas/química , Mutación , Proteínas Recombinantes de Fusión/química , Secuencia de Aminoácidos , Aminoácidos de Cadena Ramificada/metabolismo , Caspasa 2/genética , Caspasa 2/metabolismo , Caspasa 3/genética , Caspasa 3/metabolismo , Dominio Catalítico , Clonación Molecular , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Cinética , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Ingeniería de Proteínas/métodos , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Especificidad por Sustrato , Termodinámica
11.
Arch Toxicol ; 94(4): 1349-1365, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32185416

RESUMEN

Estragole, naturally occurring in a variety of herbs and spices, can form DNA adducts after bioactivation. Estragole DNA adduct formation and repair was studied in in vitro liver cell models, and a molecular dynamics simulation was used to investigate the conformation dependent (in)efficiency of N2-(trans-isoestragol-3'-yl)-2'-deoxyguanosine (E-3'-N2-dG) DNA adduct repair. HepG2, HepaRG cells, primary rat hepatocytes and CHO cells (including CHO wild-type and three NER-deficient mutants) were exposed to 50 µM estragole or 1'-hydroxyestragole and DNA adduct formation was quantified by LC-MS immediately following exposure and after a period of repair. Results obtained from CHO cell lines indicated that NER plays a role in repair of E-3'-N2-dG adducts, however, with limited efficiency since in the CHO wt cells 80% DNA adducts remained upon 24 h repair. Inefficiency of DNA repair was also found in HepaRG cells and primary rat hepatocytes. Changes in DNA structure resulting from E-3'-N2-dG adduct formation were investigated by molecular dynamics simulations. Results from molecular dynamics simulations revealed that conformational changes in double-stranded DNA by E-3'-N2-dG adduct formation are small, providing a possible explanation for the restrained repair, which may require larger distortions in the DNA structure. NER-mediated enzymatic repair of E-3'-N2-dG DNA adducts upon exposure to estragole will be limited, providing opportunities for accumulation of damage upon repeated daily exposure. The inability of this enzymatic repair is likely due to a limited distortion of the DNA double-stranded helix resulting in inefficient activation of nucleotide excision repair.


Asunto(s)
Anisoles/toxicidad , Carcinógenos/toxicidad , Aromatizantes/toxicidad , Derivados de Alilbenceno , Animales , Cromatografía Liquida , Cricetinae , Cricetulus , ADN , Aductos de ADN , Reparación del ADN , Desoxiguanosina , Hepatocitos , Espectrometría de Masas , Simulación de Dinámica Molecular , Ratas , Pruebas de Toxicidad
12.
J Chem Theory Comput ; 16(4): 2795-2802, 2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32163704

RESUMEN

Microwaves have been experimentally shown to affect the folding dynamics of peptides and proteins. Using molecular dynamics, we performed all-atom simulations of a model ß-peptide in aqueous solution where individual degrees of freedom of solvent molecules were decoupled to allow for investigation at non-equilibrium microwave-irradiated conditions. An elevated rotational temperature of the water medium was found to significantly affect the conformation of the peptide due to the weakened hydrogen-bonding interactions with the surrounding solvent molecules. Cluster analysis revealed that microwave irradiation can indeed act as a promoter in the formation of new misfolded peptide structures of the hairpin type, which are generally associated with the onset of several neurodegenerative disorders such as Alzheimer's, Parkinson's, Huntington's, and Creutzfeldt-Jakob diseases as well as certain cancer types such as amyloidosis.


Asunto(s)
Microondas , Péptidos/química , Péptidos/efectos de la radiación , Pliegue de Proteína/efectos de la radiación , Simulación de Dinámica Molecular
13.
Glycoconj J ; 37(1): 15-25, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31396754

RESUMEN

UDP-GalNAc:polypeptide GalNAc transferase (ppGalNAcT; EC 2.4.1.41) is the initiating enzyme for mucin-type O-glycosylation in animals. Members of this highly conserved glycosyltransferase family catalyse a single glycosidic linkage. They transfer an N-acetylgalactosamine (GalNAc) residue from an activated donor (UDP-GalNAc) to a serine or threonine of an acceptor polypeptide chain. A ppGalNAcT from the freshwater snail Biomphalaria glabrata is the only characterised member of this enzyme family from mollusc origin. In this work, we interpret previously published experimental characterization of this enzyme in the context of in silico models of the enzyme and its acceptor substrates. A homology model of the mollusc ppGalNAcT is created and various substrate peptides are modelled into the active site. We hypothesize about possible molecular interpretations of the available experimental data and offer potential explanations for observed substrate and cofactor specificity. Here, we review and synthesise the current knowledge of Bge-ppGalNAcT, supported by a molecular interpretation of the available data.


Asunto(s)
Biomphalaria/enzimología , N-Acetilgalactosaminiltransferasas/química , Animales , Dominio Catalítico , Simulación de Dinámica Molecular , N-Acetilgalactosaminiltransferasas/genética , N-Acetilgalactosaminiltransferasas/metabolismo , Unión Proteica , Especificidad por Sustrato
14.
J Biol Chem ; 294(38): 13995-14008, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31362986

RESUMEN

Human immunoglobulin A (IgA) is the most prevalent antibody class at mucosal sites with an important role in mucosal defense. Little is known about the impact of N-glycan modifications of IgA1 and IgA2 on binding to the Fcα receptor (FcαRI), which is also heavily glycosylated at its extracellular domain. Here, we transiently expressed human epidermal growth factor receptor 2 (HER2)-binding monomeric IgA1, IgA2m(1), and IgA2m(2) variants in Nicotiana benthamiana ΔXT/FT plants lacking the enzymes responsible for generating nonhuman N-glycan structures. By coinfiltrating IgA with the respective glycan-modifying enzymes, we generated IgA carrying distinct homogenous N-glycans. We demonstrate that distinctly different N-glycan profiles did not influence antigen binding or the overall structure and integrity of the IgA antibodies but did affect their thermal stability. Using size-exclusion chromatography, differential scanning and isothermal titration calorimetry, surface plasmon resonance spectroscopy, and molecular modeling, we probed distinct IgA1 and IgA2 glycoforms for binding to four different FcαRI glycoforms and investigated the thermodynamics and kinetics of complex formation. Our results suggest that different N-glycans on the receptor significantly contribute to binding affinities for its cognate ligand. We also noted that full-length IgA and FcαRI form a mixture of 1:1 and 1:2 complexes tending toward a 1:1 stoichiometry due to different IgA tailpiece conformations that make it less likely that both binding sites are simultaneously occupied. In conclusion, N-glycans of human IgA do not affect its structure and integrity but its thermal stability, and FcαRI N-glycans significantly modulate binding affinity to IgA.


Asunto(s)
Inmunoglobulina A/metabolismo , Polisacáridos/química , Receptores Fc/metabolismo , Sitios de Unión , Glicosilación , Células HEK293 , Humanos , Inmunoglobulina A/química , Cinética , Simulación de Dinámica Molecular , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Receptores Fc/química , Receptores Fc/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Termodinámica , Nicotiana/metabolismo
15.
Int J Mol Sci ; 20(14)2019 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-31315296

RESUMEN

Adenosine receptors are a family of G protein-coupled receptors with increased attention as drug targets on different indications. We investigate the thermodynamics of ligand binding to the A3 adenosine receptor subtype, focusing on a recently reported series of diarylacetamidopyridine inhibitors via molecular dynamics simulations. With a combined approach of thermodynamic integration and one-step perturbation, we characterize the impact of the charge distribution in a central heteroaromatic ring on the binding affinity prediction. Standard charge distributions according to the GROMOS force field yield values in good agreement with the experimental data and previous free energy calculations. Subsequently, we examine the thermodynamics of inhibitor binding in terms of the energetic and entropic contributions. The highest entropy penalties are found for inhibitors with methoxy substituents in meta position of the aryl groups. This bulky group restricts rotation of aromatic rings attached to the pyrimidine core which leads to two distinct poses of the ligand. Our predictions support the previously proposed binding pose for the o-methoxy ligand, yielding in this case a very good correlation with the experimentally measured affinities with deviations below 4 kJ/mol.


Asunto(s)
Antagonistas del Receptor de Adenosina A3/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Receptor de Adenosina A3/química , Sitios de Unión , Unión Proteica , Receptor de Adenosina A3/metabolismo
16.
Biol Chem ; 399(10): 1223-1235, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-29924726

RESUMEN

The genome of the model plant Arabidopsis thaliana encodes three paralogues of the papain-like cysteine proteinase cathepsin B (AtCathB1, AtCathB2 and AtCathB3), whose individual functions are still largely unknown. Here we show that a mutated splice site causes severe truncations of the AtCathB1 polypeptide, rendering it catalytically incompetent. By contrast, AtCathB2 and AtCathB3 are effective proteases which display comparable hydrolytic properties and share most of their substrate specificities. Site-directed mutagenesis experiments demonstrated that a single amino acid substitution (Gly336→Glu) is sufficient to confer AtCathB2 with the capacity to tolerate arginine in its specificity-determining S2 subsite, which is otherwise a hallmark of AtCathB3-mediated cleavages. A degradomics approach utilizing proteome-derived peptide libraries revealed that both enzymes are capable of acting as endopeptidases and exopeptidases, releasing dipeptides from the C-termini of substrates. Mutation of the carboxydipeptidase determinant His207 also affected the activity of AtCathB2 towards non-exopeptidase substrates, highlighting mechanistic differences between plant and human cathepsin B. This was also noted in molecular modeling studies which indicate that the occluding loop defining the dual enzymatic character of cathepsin B does not obstruct the active-site cleft of AtCathB2 to the same extent as in its mammalian orthologues.


Asunto(s)
Arabidopsis/enzimología , Carboxipeptidasas/metabolismo , Catepsina B/metabolismo , Endopeptidasas/metabolismo , Animales , Carboxipeptidasas/química , Carboxipeptidasas/genética , Catepsina B/química , Catepsina B/genética , Clonación Molecular , Endopeptidasas/química , Endopeptidasas/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Hojas de la Planta/enzimología , Reacción en Cadena en Tiempo Real de la Polimerasa , Spodoptera/citología , Spodoptera/genética
17.
Biochim Biophys Acta Proteins Proteom ; 1866(3): 442-450, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29203375

RESUMEN

Mutations of cysteine are often introduced to e.g. avoid formation of non-physiological inter-molecular disulfide bridges in in-vitro experiments, or to maintain specificity in labeling experiments. Alanine or serine is typically preferred, which usually do not alter the overall protein stability, when the original cysteine was surface exposed. However, selecting the optimal mutation for cysteines in the hydrophobic core of the protein is more challenging. In this work, the stability of selected Cys mutants of 14-3-3ζ was predicted by free-energy calculations and the obtained data were compared with experimentally determined stabilities. Both the computational predictions as well as the experimental validation point at a significant destabilization of mutants C94A and C94S. This destabilization could be attributed to the formation of hydrophobic cavities and a polar solvation of a hydrophilic side chain. A L12E, M78K double mutant was further studied in terms of its reduced dimerization propensity. In contrast to naïve expectations, this double mutant did not lead to the formation of strong salt bridges, which was rationalized in terms of a preferred solvation of the ionic species. Again, experiments agreed with the calculations by confirming the monomerization of the double mutants. Overall, the simulation data is in good agreement with experiments and offers additional insight into the stability and dimerization of this important family of regulatory proteins.


Asunto(s)
Proteínas 14-3-3/química , Cisteína/química , Multimerización de Proteína , Termodinámica , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Simulación por Computador , Cisteína/genética , Cisteína/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Mutación , Conformación Proteica , Estabilidad Proteica
18.
ACS Sens ; 2(7): 916-923, 2017 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-28750521

RESUMEN

Surface plasmon field-enhanced fluorescence energy transfer is employed for sensitive optical readout of a reversible hairpin aptamer assay that is suitable for continuous monitoring of low-molecular-weight chemical analytes. A hairpin aptamer specific to adenosine and adenosine triphosphate with Alexa Fluor 647 fluorophore attached to its 5' end was anchored via 3' end thiol to a gold thin film. Molecular spacers were used to control the distance of the fluorophore from the surface in the aptamer "off" and "on" states. The specific binding of the target analyte changes the aptamer conformation, which alters the distance of the fluorophore from the gold surface and translates to variations in the detected fluorescence intensity. The plasmonically mediated fluorescence signal increases the measured signal-to-noise ratio and allows for real-time observation of the analyte binding. Theoretical as well as experimental study of the optical signal dependence on fluorophore orientation, design of spacers, and angular distribution of collected light is presented for rational design of the assay. The detected sensor signal increased by a factor as large as 23 upon switching the aptamer from the "off" to "on" state due to the hairpin opening associated with the specific capture of target analyte.

19.
J Proteomics ; 161: 81-87, 2017 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-28400175

RESUMEN

The increasing biotechnological interest in human IgE antibodies demands advanced systems which allow their proper expression. However, this is still a challenge due to the complexity of the molecule, particularly regarding the diverse N-glycosylation pattern. Here, we present the expression of recombinant IgE in wild type and glycan-engineered Nicotiana benthamiana plants and in-depth N-glycosylation analyses. Mass spectrometric profiling revealed that plant IgE has a site occupancy rate that ranges from non-occupied at glycosite 6 (GS6) to 100% occupancy at GS1 and 2. Similarly to human cell-derived IgE, plant versions carry complex N-glycans at GS1-5 and oligomannosidic structures at GS7. Computational modelling suggests that spatial position (or orientation) of glycans can impair processing or site occupancy on adjacent glycosites. IgE expressed in glycoengineered and wild type plants carry, respectively, GnGn and plant-typical GnGnXF structures at large homogeneity. This contrasts with the glycan diversity of HEK cell-derived IgE, carrying at least 20 different glycoforms. Importantly, IgE glycoengineering allows the control of its glycosylation, a so far unmet need when using well-established expression systems. This enables the elucidation of possible carbohydrate-dependent IgE functions. SIGNIFICANCE: Targeted glycosylation of recombinant proteins may provide an advantage in therapeutic applications. Despite increasing biotechnological interest in IgE antibodies, knowledge and impact of glycosylation on this antibody class are scarce. With the ability to glyco-engineer recombinant IgE, we provide an important step towards the generation of IgE with other targeted N-glycans. This will facilitate detailed structure-function studies and may lead to the production of IgE with optimized activities.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Inmunoglobulina E/genética , Plantas Modificadas Genéticamente/genética , Proteómica/métodos , Anticuerpos Monoclonales Humanizados/genética , Sitios de Unión , Glicosilación , Humanos , Inmunoglobulina E/química , Polisacáridos/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Nicotiana/genética
20.
J Biol Chem ; 292(20): 8244-8261, 2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-28348079

RESUMEN

Myeloperoxidase (MPO) is synthesized by neutrophil and monocyte precursor cells and contributes to host defense by mediating microbial killing. Although several steps in MPO biosynthesis and processing have been elucidated, many questions remained, such as the structure-function relationship of monomeric unprocessed proMPO versus the mature dimeric MPO and the functional role of the propeptide. Here we have presented the first and high resolution (at 1.25 Å) crystal structure of proMPO and its solution structure obtained by small-angle X-ray scattering. Promyeloperoxidase hosts five occupied glycosylation sites and six intrachain cystine bridges with Cys-158 of the very flexible N-terminal propeptide being covalently linked to Cys-319 and thereby hindering homodimerization. Furthermore, the structure revealed (i) the binding site of proMPO-processing proconvertase, (ii) the structural motif for subsequent cleavage to the heavy and light chains of mature MPO protomers, and (iii) three covalent bonds between heme and the protein. Studies of the mutants C158A, C319A, and C158A/C319A demonstrated significant differences from the wild-type protein, including diminished enzymatic activity and prevention of export to the Golgi due to prolonged association with the chaperone calnexin. These structural and functional findings provide novel insights into MPO biosynthesis and processing.


Asunto(s)
Precursores Enzimáticos , Peroxidasa , Sustitución de Aminoácidos , Calnexina/química , Calnexina/genética , Calnexina/metabolismo , Cristalografía por Rayos X , Activación Enzimática/fisiología , Precursores Enzimáticos/biosíntesis , Precursores Enzimáticos/química , Precursores Enzimáticos/genética , Aparato de Golgi/enzimología , Aparato de Golgi/genética , Células HEK293 , Humanos , Células K562 , Mutación Missense , Peroxidasa/biosíntesis , Peroxidasa/química , Peroxidasa/genética , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA