Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Am J Orthod Dentofacial Orthop ; 166(1): 69-75, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38647514

RESUMEN

INTRODUCTION: The objective of this study was to investigate the accuracy of palatal miniscrew insertion, evaluating the effect of guide fabrication and surgical placement. METHODS: Guided insertion of bilateral paramedian palatal miniscrews was undertaken using Appliance Designer software (3Shape, Copenhagen, Denmark). A resin surgical guide (P Pro Surgical Guide; Straumann AG, Basel, Switzerland) was used. Superimposition of the miniscrew position relative to the digital design was undertaken using bespoke software (Inspect 3D module, OnyxCeph; Image Instruments GmbH, Chemnitz, Germany) to assess surgical inaccuracy. Miniscrew position relative to the surgical guide was also assessed to isolate the effect of planning inaccuracies. Both horizontal and vertical discrepancies were evaluated at both implant locations. RESULTS: Twenty-seven patients having bilateral palatal insertions were examined. Mean discrepancies were <0.5 mm, both in the horizontal and vertical planes. The mean overall horizontal and vertical discrepancy between the digital design and final miniscrew position on the left side was 0.32 ± 0.15 mm and 0.34 ± 0.17 mm, respectively. The maximum horizontal discrepancy observed was 0.72 mm. No significant differences were observed in relation to the accuracy of mini-implant positioning on the basis of sidedness, either for horizontal (P = 0.29) or vertical (P = 0.86) discrepancy. CONCLUSIONS: High levels of accuracy associated with guided insertion of paramedian palatal implants were recorded with mean discrepancies of less than 0.5 mm both in the horizontal and vertical planes. No difference in accuracy was noted between the left and right sides. Very minor levels of inaccuracy associated both with surgical techniques and surgical guide fabrication were recorded.


Asunto(s)
Tornillos Óseos , Métodos de Anclaje en Ortodoncia , Humanos , Métodos de Anclaje en Ortodoncia/instrumentación , Métodos de Anclaje en Ortodoncia/métodos , Femenino , Masculino , Cirugía Asistida por Computador/métodos , Hueso Paladar/cirugía , Planificación de Atención al Paciente , Adolescente , Adulto , Adulto Joven , Diseño Asistido por Computadora , Imagenología Tridimensional/métodos
2.
Cancer Cell ; 42(4): 646-661.e9, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38428412

RESUMEN

Cellular senescence can exert dual effects in tumors, either suppressing or promoting tumor progression. The senescence-associated secretory phenotype (SASP), released by senescent cells, plays a crucial role in this dichotomy. Consequently, the clinical challenge lies in developing therapies that safely enhance senescence in cancer, favoring tumor-suppressive SASP factors over tumor-promoting ones. Here, we identify the retinoic-acid-receptor (RAR) agonist adapalene as an effective pro-senescence compound in prostate cancer (PCa). Reactivation of RARs triggers a robust senescence response and a tumor-suppressive SASP. In preclinical mouse models of PCa, the combination of adapalene and docetaxel promotes a tumor-suppressive SASP that enhances natural killer (NK) cell-mediated tumor clearance more effectively than either agent alone. This approach increases the efficacy of the allogenic infusion of human NK cells in mice injected with human PCa cells, suggesting an alternative therapeutic strategy to stimulate the anti-tumor immune response in "immunologically cold" tumors.


Asunto(s)
Senescencia Celular , Neoplasias de la Próstata , Masculino , Humanos , Animales , Ratones , Neoplasias de la Próstata/tratamiento farmacológico , Receptores de Ácido Retinoico , Células Asesinas Naturales , Adapaleno
3.
Cancer Res ; 83(7): 1128-1146, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36946761

RESUMEN

Clinical management of melanomas with NRAS mutations is challenging. Targeting MAPK signaling is only beneficial to a small subset of patients due to resistance that arises through genetic, transcriptional, and metabolic adaptation. Identification of targetable vulnerabilities in NRAS-mutated melanoma could help improve patient treatment. Here, we used multiomics analyses to reveal that NRAS-mutated melanoma cells adopt a mesenchymal phenotype with a quiescent metabolic program to resist cellular stress induced by MEK inhibition. The metabolic alterations elevated baseline reactive oxygen species (ROS) levels, leading these cells to become highly sensitive to ROS induction. In vivo xenograft experiments and single-cell RNA sequencing demonstrated that intratumor heterogeneity necessitates the combination of a ROS inducer and a MEK inhibitor to inhibit both tumor growth and metastasis. Ex vivo pharmacoscopy of 62 human metastatic melanomas confirmed that MEK inhibitor-resistant tumors significantly benefited from the combination therapy. Finally, oxidative stress response and translational suppression corresponded with ROS-inducer sensitivity in 486 cancer cell lines, independent of cancer type. These findings link transcriptional plasticity to a metabolic phenotype that can be inhibited by ROS inducers in melanoma and other cancers. SIGNIFICANCE: Metabolic reprogramming in drug-resistant NRAS-mutated melanoma cells confers sensitivity to ROS induction, which suppresses tumor growth and metastasis in combination with MAPK pathway inhibitors.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Especies Reactivas de Oxígeno , Proteínas Proto-Oncogénicas B-raf/genética , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Neoplasias Cutáneas/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Línea Celular Tumoral , Mutación , Proteínas de la Membrana/genética , GTP Fosfohidrolasas/genética
4.
Mol Syst Biol ; 18(11): e11033, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36321552

RESUMEN

Cancer cells reprogram their metabolism to support growth and invasion. While previous work has highlighted how single altered reactions and pathways can drive tumorigenesis, it remains unclear how individual changes propagate at the network level and eventually determine global metabolic activity. To characterize the metabolic lifestyle of cancer cells across pathways and genotypes, we profiled the intracellular metabolome of 180 pan-cancer cell lines grown in identical conditions. For each cell line, we estimated activity for 49 pathways spanning the entirety of the metabolic network. Upon clustering, we discovered a convergence into only two major metabolic types. These were functionally confirmed by 13 C-flux analysis, lipidomics, and analysis of sensitivity to perturbations. They revealed that the major differences in cancers are associated with lipid, TCA cycle, and carbohydrate metabolism. Thorough integration of these types with multiomics highlighted little association with genetic alterations but a strong association with markers of epithelial-mesenchymal transition. Our analysis indicates that in absence of variations imposed by the microenvironment, cancer cells adopt distinct metabolic programs which serve as vulnerabilities for therapy.


Asunto(s)
Metabolómica , Neoplasias , Humanos , Metaboloma/fisiología , Neoplasias/metabolismo , Redes y Vías Metabólicas , Línea Celular , Microambiente Tumoral
5.
RSC Adv ; 12(18): 11282-11292, 2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35425076

RESUMEN

Nanosystems with various compositions and biological properties are being extensively investigated for drug and gene delivery applications. Many nanotechnology methods use novel nanocarriers, such as liposomes, in therapeutically targeted drug delivery systems. However, liposome matrices suffer from several limitations, including drug leakage and instability. Therefore, the surface modification of liposomes by coating them or adding polymers has advanced their application in drug delivery. Hence, the prevention of drug release from the liposome bilayers was the main focus of this work. For this purpose, liposomes were synthesized according to a thin film hydration method by applying various surface modifications. Three different nanocapsules, N1, N2, and N3, were prepared using 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), poly(diallyldimethylammonium)chloride (PDAA) polymer, and silica nanoparticles. PDDA and silica nanoparticles were coated on the surface of liposomes using a layer-by-layer assembly method, completely encapsulating curcumin into the core of the liposome. Fluorescence spectroscopy, TGA, DLS, XRD, SEM, and zeta potential methods were used to characterize the prepared nanocapsules. Interestingly, the fluorescence of curcumin showed a blue shift and the fluorescence efficiency was extraordinarily enhanced ∼25-, ∼54-, and ∼62-fold in the N1, N2, and N3 nanocapsules, respectively. Similarly, encapsulation efficiency, drug loading, and the anticancer activity of dietary curcumin were investigated for the different types of DMPC nanocapsules. The drug efficiencies of the liposomes were established according to the release of curcumin from the liposomes. The results showed that the release of curcumin from the nanocapsules decreased as the number of layers at the surface of the liposomes increased. The release of curcumin follows the Higuchi model; thus, a slow rate of diffusion is observed when a number of layers is added. The better encapsulation and higher anti-cancer activity of curcumin were also observed when more layers were added, which is due to electrostatic interactions inhibiting curcumin from being released.

6.
Circ Res ; 130(1): 80-95, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34809444

RESUMEN

BACKGROUND: The LDLR (low-density lipoprotein receptor) in the liver is the major determinant of LDL-cholesterol levels in human plasma. The discovery of genes that regulate the activity of LDLR helps to identify pathomechanisms of hypercholesterolemia and novel therapeutic targets against atherosclerotic cardiovascular disease. METHODS: We performed a genome-wide RNA interference screen for genes limiting the uptake of fluorescent LDL into Huh-7 hepatocarcinoma cells. Top hit genes were validated by in vitro experiments as well as analyses of data sets on gene expression and variants in human populations. RESULTS: The knockdown of 54 genes significantly inhibited LDL uptake. Fifteen of them encode for components or interactors of the U2-spliceosome. Knocking down any one of 11 out of 15 genes resulted in the selective retention of intron 3 of LDLR. The translated LDLR fragment lacks 88% of the full length LDLR and is detectable neither in nontransfected cells nor in human plasma. The hepatic expression of the intron 3 retention transcript is increased in nonalcoholic fatty liver disease as well as after bariatric surgery. Its expression in blood cells correlates with LDL-cholesterol and age. Single nucleotide polymorphisms and 3 rare variants of one spliceosome gene, RBM25, are associated with LDL-cholesterol in the population and familial hypercholesterolemia, respectively. Compared with overexpression of wild-type RBM25, overexpression of the 3 rare RBM25 mutants in Huh-7 cells led to lower LDL uptake. CONCLUSIONS: We identified a novel mechanism of posttranscriptional regulation of LDLR activity in humans and associations of genetic variants of RBM25 with LDL-cholesterol levels.


Asunto(s)
Proteínas Nucleares/metabolismo , Empalme del ARN , Receptores de LDL/genética , Colesterol/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Lipoproteínas LDL/metabolismo , Hígado/metabolismo , Mutación , Proteínas Nucleares/genética , Receptores de LDL/metabolismo , Empalmosomas/metabolismo
7.
Redox Biol ; 34: 101576, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32502899

RESUMEN

Blood-brain barrier (BBB) impairment clearly accelerates brain disease progression. As ways to prevent injury-induced barrier dysfunction remain elusive, better understanding of how BBB cells interact and modulate barrier integrity is needed. Our metabolomic profiling study showed that cell-specific adaptation to injury correlates well with metabolic reprogramming at the BBB. In particular we noted that primary astrocytes (AC) contain comparatively high levels of glutathione (GSH)-related metabolites compared to primary endothelial cells (EC). Injury significantly disturbed redox balance in EC but not AC motivating us to assess 1) whether an AC-EC GSH shuttle supports barrier stability and 2) the impact of GSH on EC function. Using an isotopic labeling/tracking approach combined with Time-of-Flight Mass Spectrometry (TOF-MS) we prove that AC constantly shuttle GSH to EC even under resting conditions - a flux accelerated by injury conditions in vitro. In correlation, co-culture studies revealed that blocking AC GSH generation and secretion via siRNA-mediated γ-glutamyl cysteine ligase (GCL) knockdown significantly compromises EC barrier integrity. Using different GSH donors, we further show that exogenous GSH supplementation improves barrier function by maintaining organization of tight junction proteins and preventing injury-induced tight junction phosphorylation. Thus the AC GSH shuttle is key for maintaining EC redox homeostasis and BBB stability suggesting GSH supplementation could improve recovery after brain injury.


Asunto(s)
Astrocitos , Glutatión , Barrera Hematoencefálica , Células Endoteliales , Uniones Estrechas
8.
N Engl J Med ; 382(12): 1166-1174, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32187475
9.
Eur Heart J ; 41(9): 995-1005, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31529020

RESUMEN

AIMS: Nuclear receptors and their cofactors regulate key pathophysiological processes in atherosclerosis development. The transcriptional activity of these nuclear receptors is controlled by the nuclear receptor corepressors (NCOR), scaffolding proteins that form the basis of large corepressor complexes. Studies with primary macrophages demonstrated that the deletion of Ncor1 increases the expression of atherosclerotic molecules. However, the role of nuclear receptor corepressors in atherogenesis is unknown. METHODS AND RESULTS: We generated myeloid cell-specific Ncor1 knockout mice and crossbred them with low-density lipoprotein receptor (Ldlr) knockouts to study the role of macrophage NCOR1 in atherosclerosis. We demonstrate that myeloid cell-specific deletion of nuclear receptor corepressor 1 (NCOR1) aggravates atherosclerosis development in mice. Macrophage Ncor1-deficiency leads to increased foam cell formation, enhanced expression of pro-inflammatory cytokines, and atherosclerotic lesions characterized by larger necrotic cores and thinner fibrous caps. The immunometabolic effects of NCOR1 are mediated via suppression of peroxisome proliferator-activated receptor gamma (PPARγ) target genes in mouse and human macrophages, which lead to an enhanced expression of the CD36 scavenger receptor and subsequent increase in oxidized low-density lipoprotein uptake in the absence of NCOR1. Interestingly, in human atherosclerotic plaques, the expression of NCOR1 is reduced whereas the PPARγ signature is increased, and this signature is more pronounced in ruptured compared with non-ruptured carotid plaques. CONCLUSIONS: Our findings show that macrophage NCOR1 blocks the pro-atherogenic functions of PPARγ in atherosclerosis and suggest that stabilizing the NCOR1-PPARγ binding could be a promising strategy to block the pro-atherogenic functions of plaque macrophages and lesion progression in atherosclerotic patients.


Asunto(s)
Aterosclerosis , Macrófagos , Co-Represor 1 de Receptor Nuclear , PPAR gamma , Animales , Aterosclerosis/genética , Aterosclerosis/prevención & control , Células Espumosas , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Co-Represor 1 de Receptor Nuclear/genética , PPAR gamma/genética , Receptores de LDL
10.
J Cereb Blood Flow Metab ; 40(6): 1338-1350, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31357902

RESUMEN

In Tay-Sachs and Sandhoff disease, a deficiency of the lysosomal enzyme ß-hexosaminidase causes GM2 and other gangliosides to accumulate in neurons and triggers neurodegeneration. Although the pathology centers on neurons, ß-hexosaminidase is mainly expressed outside of neurons, suggesting that gene therapy of these diseases should target non-neuronal cells to reconstitute physiological conditions. Here, we tested in Hexb-/- mice, a model of Sandhoff disease, to determine whether endothelial expression of the genes for human ß-hexosaminidase subunit A and B (HEXA, HEXB) is able to reduce disease symptoms and prolong survival of the affected mice. The brain endothelial selective vectors AAV-BR1-CAG-HEXA and AAV-BR1-CAG-HEXB transduced brain endothelial cells, which subsequently released ß-hexosaminidase enzyme. In vivo intravenous administration of the gene vectors to adult and neonatal mice prolonged survival. They improved neurological function and reduced accumulation of the ganglioside GM2 and the glycolipid GA2 as well as astrocytic activation. Overall, the data demonstrate that endothelial cells are a suitable target for intravenous gene therapy of GM2 gangliosidoses and possibly other lysosomal storage disorders.


Asunto(s)
Células Endoteliales , Terapia Genética/métodos , Enfermedad de Sandhoff , Cadena alfa de beta-Hexosaminidasa/administración & dosificación , Cadena beta de beta-Hexosaminidasa/administración & dosificación , Animales , Encéfalo , Dependovirus , Modelos Animales de Enfermedad , Vectores Genéticos , Humanos , Ratones , Ratones Noqueados , Transducción Genética , Cadena alfa de beta-Hexosaminidasa/genética , Cadena beta de beta-Hexosaminidasa/genética
11.
Eur Heart J ; 40(12): 997-1008, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30629164

RESUMEN

AIMS: Metabolic cardiomyopathy (MC)-characterized by intra-myocardial triglyceride (TG) accumulation and lipotoxic damage-is an emerging cause of heart failure in obese patients. Yet, its mechanisms remain poorly understood. The Activator Protein 1 (AP-1) member JunD was recently identified as a key modulator of hepatic lipid metabolism in obese mice. The present study investigates the role of JunD in obesity-induced MC. METHODS AND RESULTS: JunD transcriptional activity was increased in hearts from diet-induced obese (DIO) mice and was associated with myocardial TG accumulation and left ventricular (LV) dysfunction. Obese mice lacking JunD were protected against MC. In DIO hearts, JunD directly binds PPARγ promoter thus enabling transcription of genes involved in TG synthesis, uptake, hydrolysis, and storage (i.e. Fas, Cd36, Lpl, Plin5). Cardiac-specific overexpression of JunD in lean mice led to PPARγ activation, cardiac steatosis, and dysfunction, thereby mimicking the MC phenotype. In DIO hearts as well as in neonatal rat ventricular myocytes exposed to palmitic acid, Ago2 immunoprecipitation, and luciferase assays revealed JunD as a direct target of miR-494-3p. Indeed, miR-494-3p was down-regulated in hearts from obese mice, while its overexpression prevented lipotoxic damage by suppressing JunD/PPARγ signalling. JunD and miR-494-3p were also dysregulated in myocardial specimens from obese patients as compared with non-obese controls, and correlated with myocardial TG content, expression of PPARγ-dependent genes, and echocardiographic indices of LV dysfunction. CONCLUSION: miR-494-3p/JunD is a novel molecular axis involved in obesity-related MC. These results pave the way for approaches to prevent or treat LV dysfunction in obese patients.


Asunto(s)
Cardiomiopatías/metabolismo , Miocardio/metabolismo , Obesidad/complicaciones , Proteínas Proto-Oncogénicas c-jun/metabolismo , Animales , Cardiomiopatías/complicaciones , Cardiomiopatías/fisiopatología , Estudios de Casos y Controles , Dieta Alta en Grasa , Regulación hacia Abajo , Insuficiencia Cardíaca/etiología , Humanos , Metabolismo de los Lípidos , Ratones , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , PPAR gamma/metabolismo , Ratas , Factor de Transcripción AP-1/metabolismo , Activación Transcripcional , Triglicéridos/metabolismo , Disfunción Ventricular Izquierda/diagnóstico por imagen , Disfunción Ventricular Izquierda/fisiopatología , Disfunción Ventricular Izquierda/prevención & control
12.
Sci Rep ; 8(1): 14274, 2018 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-30250222

RESUMEN

We sought to identify circulating microRNAs as biomarkers of prevalent or incident diabetes. In a pilot study of 18 sex- and age-matched patients with metabolic syndrome, nine of whom developed diabetes during 6 years of follow-up, an array of 372 microRNAs discovered significantly elevated serum levels of microRNAs -122, -192, -194, and -215 in patients who developed diabetes mellitus type 2 (T2DM). In two cross-sectional validation studies, one encompassing sex- and age-matched groups of patients with T2DM, impaired fasting glucose (IFG) and euglycemic controls (n = 43 each) and the other 53 patients with type 1 diabetes and 54 age- and BMI-matched euglycemic controls, serum levels of miR-192, miR-194, and mi215 were significantly higher in diabetic subjects than in probands with euglycemia or IFG. In a longitudinal study of 213 initially diabetes-free patients of whom 35 developed diabetes during 6 years of follow-up, elevated serum levels of microRNAs 192 and 194 were associated with incident T2DM, independently of fasting glucose, HbA1c and other risk factors. Serum levels of miR-192 and miR-194 were also elevated in diabetic Akt2 knockout mice compared to wild type mice. In conclusion, circulating microRNAs -192 and -194 are potential biomarkers for risk of diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/sangre , Síndrome Metabólico/sangre , MicroARNs/sangre , Anciano , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Femenino , Humanos , Estimación de Kaplan-Meier , Masculino , Síndrome Metabólico/genética , Síndrome Metabólico/patología , Ratones , Ratones Noqueados , Persona de Mediana Edad , Proyectos Piloto , Estado Prediabético/sangre , Estado Prediabético/genética , Estado Prediabético/patología , Proteínas Proto-Oncogénicas c-akt/genética
13.
J Neurosci ; 36(36): 9313-25, 2016 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-27605608

RESUMEN

UNLABELLED: Hyperglycemia is common in patients with acute stroke, even in those without preexisting diabetes, and denotes a bad outcome. However, the mechanisms underlying the detrimental effects of hyperglycemia are largely unclear. In a mouse model of ischemic stroke, we found that hyperglycemia increased the infarct volume and decreased the number of protective noninflammatory monocytes/macrophages in the ischemic brain. Ablation of peripheral monocytes blocked the detrimental effect of hyperglycemia, suggesting that monocytes are required. In hyperglycemic mice, α-dicarbonyl glucose metabolites, the precursors for advanced glycation end products, were significantly elevated in plasma and ischemic brain tissue. The receptor of advanced glycation end products, AGER (previously known as RAGE), interfered with polarization of macrophages to a noninflammatory phenotype. When Ager was deleted, hyperglycemia did not aggravate ischemic brain damage any longer. Independently of AGER, methylglyoxal reduced the release of endothelial CSF-1 (M-CSF), which stimulates polarization of macrophages to a noninflammatory phenotype in the microenvironment of the ischemic brain. In summary, our study identified α-dicarbonyls and AGER as mediators by which hyperglycemia lowers the number of protective noninflammatory macrophages and consequently increases ischemic brain damage. Modulating the metabolism of α-dicarbonyls or blocking AGER may improve the treatment of stroke patients with hyperglycemia. SIGNIFICANCE STATEMENT: Although glucose is the main energy substrate of the brain, hyperglycemia aggravates ischemic brain damage in acute stroke. So far, clinical trials have indicated that insulin treatment provides no solution to this common clinical problem. This study shows, in an experimental stroke model, that hyperglycemia interferes with the polarization of monocytes/macrophages to a protective cell type. Key players are α-dicarbonyls and the receptor for advanced glycation end products (AGER). Deletion of AGER normalized monocyte/macrophage polarization and reversed the detrimental effects of hyperglycemia, suggesting new avenues to treat stroke patients.


Asunto(s)
Polaridad Celular/fisiología , Hiperglucemia/etiología , Hiperglucemia/patología , Macrófagos/patología , Monocitos/patología , Accidente Cerebrovascular/complicaciones , Animales , Trasplante de Médula Ósea , Encéfalo/citología , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Receptor 1 de Quimiocinas CX3C , Polaridad Celular/genética , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/fisiología , Regulación de la Expresión Génica/genética , Hiperglucemia/cirugía , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Monocitos/efectos de los fármacos , Receptor para Productos Finales de Glicación Avanzada/genética , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Receptores de Quimiocina/genética , Receptores de Quimiocina/metabolismo , Accidente Cerebrovascular/cirugía
14.
Neuropharmacology ; 110(Pt A): 211-222, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27016021

RESUMEN

1-Deoxysphingolipids (1-deoxySL) are atypical and neurotoxic sphingolipids formed by alternate substrate usage of the enzyme serine-palmitoyltransferase. Pathologically increased 1-deoxySL formation causes hereditary sensory and autosomal neuropathy type 1 (HSAN1) - a progressive peripheral axonopathy. However, the underlying molecular mechanisms by which 1-deoxySL acts are unknown. Herein we studied the effect of 1-deoxysphinganine (1-deoxySA) and its canonical counterpart sphinganine (SA) in aged cultured neurons comparing their outcome on cell survival and cytoskeleton integrity. 1-deoxySA caused rapid neuronal cytoskeleton disruption and modulated important cytoskeletal regulatory and associated components including Rac1, Ezrin and insulin receptor substrate 53. We show that 1-deoxySA is internalized and metabolized downstream to 1-deoxydihydroceramide since inhibition of ceramide synthase protected neurons from 1-deoxySA-mediated cell death. In addition, 1-deoxySA reduced protein levels of N-methyl-d-aspartate receptor (NMDAR) subunit GluN2B, the postsynaptic density protein 95 and induced cleavage of p35 to p25. Notably, blocking NMDAR activation by MK-801 or memantine significantly prevented 1-deoxySA neurotoxicity. Functional studies of differentiating primary neurons via the patch-clamp technique demonstrated that 1-deoxySA irreversibly depolarizes the neuronal membrane potential in an age-dependent manner. Notably, only neuronal cells that displayed functional NMDAR- and NMDA-induced whole-cell currents responded to 1-deoxySA treatment. Furthermore, pre-exposure to the non-competitive antagonist MK-801 blocked the current response of NMDA and glycine, as well as 1-deoxySA. We conclude that 1-deoxySA-induced neurotoxicity compromises cytoskeletal stability and targets NMDAR signaling in an age-dependent manner. Thus stabilization of cytoskeletal structures and/or inhibition of glutamate receptors could be a potential therapeutic approach to prevent 1-deoxySA-induced neurodegeneration.


Asunto(s)
Neuronas/efectos de los fármacos , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Esfingolípidos/toxicidad , Animales , Línea Celular Tumoral , Corteza Cerebral , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Maleato de Dizocilpina/farmacología , Relación Dosis-Respuesta a Droga , Antagonistas de Aminoácidos Excitadores/farmacología , Glicina/administración & dosificación , Glicina/metabolismo , Humanos , Memantina/farmacología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones Endogámicos C57BL , N-Metilaspartato/administración & dosificación , N-Metilaspartato/metabolismo , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Esfingosina/análogos & derivados , Esfingosina/toxicidad , Proteína de Unión al GTP rac1/antagonistas & inhibidores , Proteína de Unión al GTP rac1/metabolismo
15.
Atherosclerosis ; 243(2): 638-44, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26554714

RESUMEN

BACKGROUND: After ingestion of phosphatidylcholine, l-carnitine or betaine, trimethylamine-N-oxide (TMAO) is formed by gut microbiota and liver enzymes. Elevated TMAO plasma levels were associated with increased cardiovascular risk and other diseases. Also betaine and choline itself were recently associated with increased cardiovascular risk. METHODS: A newly developed LC-HRMS method was applied to measure the plasma concentrations of TMAO, betaine and choline in a cohort of 339 patients undergoing coronary angiography for the evaluation of suspected coronary artery disease. RESULTS: Betaine concentrations in males were significantly higher than in females (42.0 vs. 35.9 µmol/L; p < 0.001). Plasma concentrations of TMAO but not of betaine or choline were higher in patients with diabetes compared to euglycemic patients (2.39 vs. 0.980 µmol/L; p = 0.001) as well as in patients with metabolic syndrome as compared to patients without metabolic syndrome (2.37 vs. 1.43 µmol/L; p = 0.002). Plasma concentrations of TMAO or choline increased significantly with decreasing renal function (Spearman's rho: -0.281; p < 0.001). However, plasma levels of TMAO or betaine were associated with neither a history of myocardial infarction nor the angiographically assessed presence of coronary heart disease, nor incident cardiovascular events during 8 years of follow-up. Plasma levels of choline were significantly lower in patients with a history of acute myocardial infarction as compared to those without such history (10.0 vs. 10.8 µmol/L; p = 0.045). CONCLUSIONS: Plasma levels of TMAO are confounded by impaired kidney function and poor metabolic control but are not associated with the history, presence or incidence of symptoms or events of coronary heart disease.


Asunto(s)
Cromatografía Liquida , Enfermedad Coronaria/sangre , Diabetes Mellitus/sangre , Riñón/fisiopatología , Síndrome Metabólico/sangre , Metilaminas/sangre , Espectrometría de Masa por Ionización de Electrospray , Anciano , Betaína/sangre , Biomarcadores/sangre , Glucemia/análisis , Colina/sangre , Angiografía Coronaria , Enfermedad Coronaria/diagnóstico por imagen , Enfermedad Coronaria/fisiopatología , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/fisiopatología , Femenino , Tasa de Filtración Glomerular , Humanos , Masculino , Síndrome Metabólico/diagnóstico , Síndrome Metabólico/fisiopatología , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Pronóstico , Reproducibilidad de los Resultados , Factores de Tiempo
16.
FASEB J ; 29(11): 4461-72, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26198449

RESUMEN

Peripheral neuropathy is a major dose-limiting side effect of paclitaxel and cisplatin chemotherapy. In the current study, we tested the involvement of a novel class of neurotoxic sphingolipids, the 1-deoxysphingolipids. 1-Deoxysphingolipids are produced when the enzyme serine palmitoyltransferase uses l-alanine instead of l-serine as its amino acid substrate. We tested whether treatment of cells with paclitaxel (250 nM, 1 µM) and cisplatin (250 nM, 1 µM) would result in elevated cellular levels of 1-deoxysphingolipids. Our results revealed that paclitaxel, but not cisplatin treatment, caused a dose-dependent elevation of 1-deoxysphingolipids levels and an increase in the message and activity of serine palmitoyltransferase (P < 0.05). We also tested whether there is an association between peripheral neuropathy symptoms [evaluated by the European Organization for Research and Treatment of Cancer (EORTC) QLQ-chemotherapy-induced peripheral neuropathy-20 (CIPN20) instrument] and the 1-deoxysphingolipid plasma levels (measured by mass spectrometry) in 27 patients with breast cancer who were treated with paclitaxel chemotherapy. Our results showed that there was an association between the incidence and severity of neuropathy and the levels of very-long-chain 1-deoxyceramides such as C24 (P < 0.05), with the strongest association being with motor neuropathy (P < 0.001). Our data from cells and from patients with breast cancer suggest that 1-deoxysphingolipids, the very-long-chain in particular, play a role as molecular intermediates of paclitaxel-induced peripheral neuropathy.


Asunto(s)
Neoplasias de la Mama , Neurotoxinas/sangre , Paclitaxel/efectos adversos , Enfermedades del Sistema Nervioso Periférico , Esfingolípidos/sangre , Adolescente , Adulto , Neoplasias de la Mama/sangre , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Femenino , Células HEK293 , Humanos , Persona de Mediana Edad , Paclitaxel/administración & dosificación , Enfermedades del Sistema Nervioso Periférico/sangre , Enfermedades del Sistema Nervioso Periférico/inducido químicamente
17.
J Lipid Res ; 55(8): 1730-7, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24950692

RESUMEN

Sphingosine-1-phosphate (S1P) mediates several cytoprotective functions of HDL. apoM acts as a S1P binding protein in HDL. Erythrocytes are the major source of S1P in plasma. After glomerular filtration, apoM is endocytosed in the proximal renal tubules. Human or murine HDL elicited time- and dose-dependent S1P efflux from erythrocytes. Compared with HDL of wild-type (wt) mice, S1P efflux was enhanced in the presence of HDL from apoM transgenic mice, but not diminished in the presence of HDL from apoM knockout (Apom(-/-)) mice. Artificially reconstituted and apoM-free HDL also effectively induced S1P efflux from erythrocytes. S1P and apoM were not measurable in the urine of wt mice. Apom(-/-) mice excreted significant amounts of S1P. apoM was detected in the urine of mice with defective tubular endocytosis because of knockout of the LDL receptor-related protein, chloride-proton exchanger ClC-5 (Clcn5(-/-)), or the cysteine transporter cystinosin. Urinary levels of S1P were significantly elevated in Clcn5(-/-) mice. In contrast to Apom(-/-) mice, these mice showed normal plasma concentrations for apoM and S1P. In conclusion, HDL facilitates S1P efflux from erythrocytes by both apoM-dependent and apoM-independent mechanisms. Moreover, apoM facilitates tubular reabsorption of S1P from the urine, however, with no impact on S1P plasma concentrations.


Asunto(s)
Apolipoproteínas M/metabolismo , Eritrocitos/metabolismo , Túbulos Renales/metabolismo , Lisofosfolípidos/metabolismo , Esfingosina/análogos & derivados , Animales , Apolipoproteínas M/genética , Lipoproteínas HDL/genética , Lipoproteínas HDL/metabolismo , Lisofosfolípidos/genética , Ratones , Ratones Noqueados , Esfingosina/genética , Esfingosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA