Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cancer Cell ; 36(4): 402-417.e13, 2019 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-31564638

RESUMEN

Metastasis is the leading cause of cancer mortality. Chromatin remodeling provides the foundation for the cellular reprogramming necessary to drive metastasis. However, little is known about the nature of this remodeling and its regulation. Here, we show that metastasis-inducing pathways regulate histone chaperones to reduce canonical histone incorporation into chromatin, triggering deposition of H3.3 variant at the promoters of poor-prognosis genes and metastasis-inducing transcription factors. This specific incorporation of H3.3 into chromatin is both necessary and sufficient for the induction of aggressive traits that allow for metastasis formation. Together, our data clearly show incorporation of histone variant H3.3 into chromatin as a major regulator of cell fate during tumorigenesis, and histone chaperones as valuable therapeutic targets for invasive carcinomas.


Asunto(s)
Carcinoma/patología , Cromatina/metabolismo , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Metástasis de la Neoplasia/genética , Animales , Carcinogénesis/genética , Carcinoma/genética , Línea Celular Tumoral , Cromatina/genética , Factor 1 de Ensamblaje de la Cromatina/genética , Factor 1 de Ensamblaje de la Cromatina/metabolismo , Progresión de la Enfermedad , Epigénesis Genética , Transición Epitelial-Mesenquimal/genética , Femenino , Histonas/genética , Humanos , Masculino , Ratones , Regiones Promotoras Genéticas/genética , RNA-Seq , Factores de Transcripción/genética , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Cancer Res ; 77(18): 5077-5094, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28716898

RESUMEN

Emerging observations link dysregulation of TANK-binding kinase 1 (TBK1) to developmental disorders, inflammatory disease, and cancer. Biochemical mechanisms accounting for direct participation of TBK1 in host defense signaling have been well described. However, the molecular underpinnings of the selective participation of TBK1 in a myriad of additional cell biological systems in normal and pathophysiologic contexts remain poorly understood. To elucidate the context-selective role of TBK1 in cancer cell survival, we employed a combination of broad-scale chemogenomic and interactome discovery strategies to generate data-driven mechanism-of-action hypotheses. This approach uncovered evidence that TBK1 supports AKT/mTORC1 pathway activation and function through direct modulation of multiple pathway components acting both upstream and downstream of the mTOR kinase itself. Furthermore, we identified distinct molecular features in which mesenchymal, Ras-mutant lung cancer is acutely dependent on TBK1-mediated support of AKT/mTORC1 pathway activation for survival. Cancer Res; 77(18); 5077-94. ©2017 AACR.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Mesodermo/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mesodermo/efectos de los fármacos , Mesodermo/patología , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Elementos Reguladores de la Transcripción/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/genética , Células Tumorales Cultivadas
3.
Nat Chem Biol ; 11(6): 401-8, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25867045

RESUMEN

Modern cancer treatment employs many effective chemotherapeutic agents originally discovered from natural sources. The cyclic depsipeptide didemnin B has demonstrated impressive anticancer activity in preclinical models. Clinical use has been approved but is limited by sparse patient responses combined with toxicity risk and an unclear mechanism of action. From a broad-scale effort to match antineoplastic natural products to their cellular activities, we found that didemnin B selectively induces rapid and wholesale apoptosis through dual inhibition of PPT1 and EEF1A1. Furthermore, empirical discovery of a small panel of exceptional responders to didemnin B allowed the generation of a regularized regression model to extract a sparse-feature genetic biomarker capable of predicting sensitivity to didemnin B. This may facilitate patient selection in a fashion that could enhance and expand the therapeutic application of didemnin B against neoplastic disease.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Depsipéptidos/farmacología , Proteínas de la Membrana/antagonistas & inhibidores , Factor 1 de Elongación Peptídica/antagonistas & inhibidores , Farmacogenética , Apoptosis/genética , Biomarcadores/metabolismo , Línea Celular Tumoral , Estudio de Asociación del Genoma Completo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas de la Membrana/genética , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Factor 1 de Elongación Peptídica/genética , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Tioléster Hidrolasas , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética
4.
Cell ; 160(4): 715-728, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25679763

RESUMEN

AMP-activated protein kinase (AMPK) is a master sensor and regulator of cellular energy status. Upon metabolic stress, AMPK suppresses anabolic and promotes catabolic processes to regain energy homeostasis. Cancer cells can occasionally suppress the growth-restrictive AMPK pathway by mutation of an upstream regulatory kinase. Here, we describe a widespread mechanism to suppress AMPK through its ubiquitination and degradation by the cancer-specific MAGE-A3/6-TRIM28 ubiquitin ligase. MAGE-A3 and MAGE-A6 are highly similar proteins normally expressed only in the male germline but frequently re-activated in human cancers. MAGE-A3/6 are necessary for cancer cell viability and are sufficient to drive tumorigenic properties of non-cancerous cells. Screening for targets of MAGE-A3/6-TRIM28 revealed that it ubiquitinates and degrades AMPKα1. This leads to inhibition of autophagy, activation of mTOR signaling, and hypersensitization to AMPK agonists, such as metformin. These findings elucidate a germline mechanism commonly hijacked in cancer to suppress AMPK.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Antígenos de Neoplasias/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Secuencia de Aminoácidos , Animales , Antígenos de Neoplasias/química , Antígenos de Neoplasias/genética , Metabolismo Energético , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Alineación de Secuencia , Transducción de Señal , Testículo/metabolismo
5.
Sci Signal ; 6(297): ra90, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24129700

RESUMEN

A challenge for biomedical research is the development of pharmaceuticals that appropriately target disease mechanisms. Natural products can be a rich source of bioactive chemicals for medicinal applications but can act through unknown mechanisms and can be difficult to produce or obtain. To address these challenges, we developed a new marine-derived, renewable natural products resource and a method for linking bioactive derivatives of this library to the proteins and biological processes that they target in cells. We used cell-based screening and computational analysis to match gene expression signatures produced by natural products to those produced by small interfering RNA (siRNA) and synthetic microRNA (miRNA) libraries. With this strategy, we matched proteins and miRNAs with diverse biological processes and also identified putative protein targets and mechanisms of action for several previously undescribed marine-derived natural products. We confirmed mechanistic relationships for selected siRNAs, miRNAs, and compounds with functional roles in autophagy, chemotaxis mediated by discoidin domain receptor 2, or activation of the kinase AKT. Thus, this approach may be an effective method for screening new drugs while simultaneously identifying their targets.


Asunto(s)
Productos Biológicos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ontología de Genes , Transcriptoma/efectos de los fármacos , Animales , Autofagia/efectos de los fármacos , Autofagia/genética , Bacterias/química , Bacterias/clasificación , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Línea Celular Tumoral , Células Cultivadas , Análisis por Conglomerados , Biología Computacional/métodos , Evaluación Preclínica de Medicamentos/métodos , Redes Reguladoras de Genes/efectos de los fármacos , Redes Reguladoras de Genes/genética , Células HCT116 , Humanos , Invertebrados/química , Células MCF-7 , Biología Marina , Ratones , Ratones Endogámicos BALB C , MicroARNs/genética , Estructura Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Interferencia de ARN
6.
Mol Cell ; 41(4): 458-70, 2011 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-21329883

RESUMEN

The innate immune-signaling kinase, TBK1, couples pathogen surveillance to induction of host defense mechanisms. Pathological activation of TBK1 in cancer can overcome programmed cell death cues, enabling cells to survive oncogenic stress. The mechanistic basis of TBK1 prosurvival signaling, however, has been enigmatic. Here, we show that TBK1 directly activates AKT by phosphorylation of the canonical activation loop and hydrophobic motif sites independently of PDK1 and mTORC2. Upon mitogen stimulation, triggering of the innate immune response, re-exposure to glucose, or oncogene activation, TBK1 is recruited to the exocyst, where it activates AKT. In cells lacking TBK1, insulin activates AKT normally, but AKT activation by exocyst-dependent mechanisms is impaired. Discovery and characterization of a 6-aminopyrazolopyrimidine derivative, as a selective low-nanomolar TBK1 inhibitor, indicates that this regulatory arm can be pharmacologically perturbed independently of canonical PI3K/PDK1 signaling. Thus, AKT is a direct TBK1 substrate that connects TBK1 to prosurvival signaling.


Asunto(s)
Neoplasias/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Animales , Supervivencia Celular , Transformación Celular Neoplásica , Células Cultivadas , Células HCT116 , Humanos , Inmunidad Innata , Ratones , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Transfección
7.
Cell ; 144(2): 253-67, 2011 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-21241894

RESUMEN

The study of macroautophagy in mammalian cells has described induction, vesicle nucleation, and membrane elongation complexes as key signaling intermediates driving autophagosome biogenesis. How these components are recruited to nascent autophagosomes is poorly understood, and although much is known about signaling mechanisms that restrain autophagy, the nature of positive inductive signals that can promote autophagy remain cryptic. We find that the Ras-like small G protein, RalB, is localized to nascent autophagosomes and is activated on nutrient deprivation. RalB and its effector Exo84 are required for nutrient starvation-induced autophagocytosis, and RalB activation is sufficient to promote autophagosome formation. Through direct binding to Exo84, RalB induces the assembly of catalytically active ULK1 and Beclin1-VPS34 complexes on the exocyst, which are required for isolation membrane formation and maturation. Thus, RalB signaling is a primary adaptive response to nutrient limitation that directly engages autophagocytosis through mobilization of the core vesicle nucleation machinery.


Asunto(s)
Autofagia , Células Epiteliales/patología , Fagosomas/metabolismo , Transducción de Señal , Proteínas de Unión al GTP ral/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Beclina-1 , Línea Celular , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Células Epiteliales/microbiología , Humanos , Proteínas de la Membrana/metabolismo , Complejos Multiproteicos/metabolismo , Salmonella typhimurium/fisiología , Estrés Fisiológico , Proteínas de Transporte Vesicular/metabolismo
8.
EMBO J ; 26(17): 3968-80, 2007 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-17690688

RESUMEN

Proper regulation of cell cycle progression is pivotal for maintaining genome stability. In a search for DNA damage-inducible, CHK1-modulated genes, we have identified BTG3 (B-cell translocation gene 3) as a direct p53 target. The p53 transcription factor binds to a consensus sequence located in intron 2 of the gene both in vitro and in vivo, and depletion of p53 by small interfering RNA (siRNA) abolishes DNA damage-induced expression of the gene. Furthermore, ablation of BTG3 by siRNA in cancer cells results in accelerated exit from the DNA damage-induced G2/M block. In vitro, BTG3 binds to and inhibits E2F1 through an N-terminal domain including the conserved box A. Deletion of the interaction domain in BTG3 abrogates not only its growth suppression activity, but also its repression on E2F1-mediated transactivation. We also present evidence that by disrupting the DNA binding activity of E2F1, BTG3 participates in the regulation of E2F1 target gene expression. Therefore, our studies have revealed a previously unidentified pathway through which the activity of E2F1 may be guarded by activated p53.


Asunto(s)
Factor de Transcripción E2F1/metabolismo , Proteínas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas de Ciclo Celular , Línea Celular Tumoral , Daño del ADN , Factor de Transcripción E2F1/antagonistas & inhibidores , Humanos , Intrones , Análisis de Secuencia por Matrices de Oligonucleótidos , Unión Proteica , Proteínas/genética , Activación Transcripcional , Proteína p53 Supresora de Tumor/genética
9.
Mol Biol Cell ; 16(4): 1684-95, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15659650

RESUMEN

The tumor suppressor protein p53 mediates stress-induced growth arrest or apoptosis and plays a major role in safeguarding genome integrity. In response to DNA damage, p53 can be modified at multiple sites by phosphorylation and acetylation. We report on the characterization of p53 C-terminal phosphorylation by CHK1 and CHK2, two serine/threonine (Ser/Thr) protein kinases, previously implicated in the phosphorylation of the p53 N terminus. Using tryptic phosphopeptide mapping, we have identified six additional CHK1 and CHK2 sites residing in the final 100 amino acids of p53. Phosphorylation of at least three of these sites, Ser366, Ser378, and Thr387, was induced by DNA damage, and the induction at Ser366 and Thr387 was abrogated by small interfering RNA targeting chk1 and chk2. Furthermore, mutation of these phosphorylation sites has a different impact on p53 C-terminal acetylation and on the activation of p53-targeted promoters. Our results demonstrate a possible interplay between p53 C-terminal phosphorylation and acetylation, and they provide an additional mechanism for the control of the activity of p53 by CHK1 and CHK2.


Asunto(s)
Daño del ADN , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo , Acetilación , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Quinasa de Punto de Control 2 , Regulación hacia Abajo , Humanos , Lisina/genética , Lisina/metabolismo , Mutación/genética , Fosforilación , Fosfoserina/metabolismo , Fosfotreonina/metabolismo , Regiones Promotoras Genéticas/genética , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transcripción Genética/genética , Proteína p53 Supresora de Tumor/genética
10.
J Biol Chem ; 280(9): 7748-57, 2005 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-15618221

RESUMEN

CHK2/hCds1 plays important roles in the DNA damage-induced cell cycle checkpoint by phosphorylating several important targets, such as Cdc25 and p53. To obtain a better understanding of the CHK2 signaling pathway, we have carried out a yeast two-hybrid screen to search for potential CHK2-interacting proteins. Here, we report the identification of the mitotic checkpoint kinase, TTK/hMps1, as a novel CHK2-interacting protein. TTK/hMps1 directly phosphorylates CHK2 on Thr-68 in vitro. Expression of a TTK kinase-dead mutant, TTK(D647A), interferes with the G(2)/M arrest induced by either ionizing radiation or UV light. Interestingly, induction of CHK2 Thr-68 phosphorylation and of several downstream events, such as cyclin B1 accumulation and Cdc2 Tyr-15 phosphorylation, is also affected. Furthermore, ablation of TTK expression using small interfering RNA results not only in reduced CHK2 Thr-68 phosphorylation, but also in impaired growth arrest. Our results are consistent with a model in which TTK functions upstream from CHK2 in response to DNA damage and suggest possible cross-talk between the spindle assembly checkpoint and the DNA damage checkpoint.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiología , Daño del ADN , Proteínas Quinasas/metabolismo , Proteínas Quinasas/fisiología , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/fisiología , Treonina/química , Western Blotting , Ciclo Celular , División Celular , Línea Celular , Línea Celular Tumoral , Quinasa de Punto de Control 2 , Ciclina B/metabolismo , Ciclina B1 , Escherichia coli/metabolismo , Fase G2 , Glutatión Transferasa/metabolismo , Células HeLa , Humanos , Inmunoprecipitación , Modelos Biológicos , Mutación , Fosforilación , Plásmidos/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas , ARN Interferente Pequeño/metabolismo , Radiación Ionizante , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Transfección , Proteína p53 Supresora de Tumor/metabolismo , Técnicas del Sistema de Dos Híbridos , Tirosina/química , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA