Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
FEBS J ; 289(14): 4251-4303, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-33934527

RESUMEN

Vaccination is one of the greatest achievements in biomedical research preventing death and morbidity in many infectious diseases through the induction of pathogen-specific humoral and cellular immune responses. Currently, no effective vaccines are available for pathogens with a highly variable antigenic load, such as the human immunodeficiency virus or to induce cellular T-cell immunity in the fight against cancer. The recent SARS-CoV-2 outbreak has reinforced the relevance of designing smart therapeutic vaccine modalities to ensure public health. Indeed, academic and private companies have ongoing joint efforts to develop novel vaccine prototypes for this virus. Many pathogens are covered by a dense glycan-coat, which form an attractive target for vaccine development. Moreover, many tumor types are characterized by altered glycosylation profiles that are known as "tumor-associated carbohydrate antigens". Unfortunately, glycans do not provoke a vigorous immune response and generally serve as T-cell-independent antigens, not eliciting protective immunoglobulin G responses nor inducing immunological memory. A close and continuous crosstalk between glycochemists and glycoimmunologists is essential for the successful development of efficient immune modulators. It is clear that this is a key point for the discovery of novel approaches, which could significantly improve our understanding of the immune system. In this review, we discuss the latest advancements in development of vaccines against glycan epitopes to gain selective immune responses and to provide an overview on the role of different immunogenic constructs in improving glycovaccine efficacy.


Asunto(s)
COVID-19 , Neoplasias , Vacunas , COVID-19/prevención & control , Glicoconjugados/uso terapéutico , Humanos , Neoplasias/prevención & control , Polisacáridos/uso terapéutico , SARS-CoV-2
2.
FEBS J ; 288(16): 4746-4772, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33752265

RESUMEN

Glycan structures are common posttranslational modifications of proteins, which serve multiple important structural roles (for instance in protein folding), but also are crucial participants in cell-cell communications and in the regulation of immune responses. Through the interaction with glycan-binding receptors, glycans are able to affect the activation status of antigen-presenting cells, leading either to induction of pro-inflammatory responses or to suppression of immunity and instigation of immune tolerance. This unique feature of glycans has attracted the interest and spurred collaborations of glyco-chemists and glyco-immunologists to develop glycan-based tools as potential therapeutic approaches in the fight against diseases such as cancer and autoimmune conditions. In this review, we highlight emerging advances in this field, and in particular, we discuss on how glycan-modified conjugates or glycoengineered cells can be employed as targeting devices to direct tumor antigens to lectin receptors on antigen-presenting cells, like dendritic cells. In addition, we address how glycan-based nanoparticles can act as delivery platforms to enhance immune responses. Finally, we discuss some of the latest developments in glycan-based therapies, including chimeric antigen receptor (CAR)-T cells to achieve targeting of tumor-associated glycan-specific epitopes, as well as the use of glycan moieties to suppress ongoing immune responses, especially in the context of autoimmunity.


Asunto(s)
Autoinmunidad/inmunología , Polisacáridos/inmunología , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Animales , Comunicación Celular/inmunología , Humanos , Nanopartículas/química , Polisacáridos/química , Procesamiento Proteico-Postraduccional
3.
Bioorg Chem ; 86: 705-713, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30836234

RESUMEN

Carbonic anhydrase enzymes (EC 4.2.1.1, CAs) are metalloenzyme families that catalyze the rapid conversion of H2O and CO2 to HCO3- and H+. CAs are found in different tissues where they participate in various significant biochemical processes such as ion transport, carbon dioxide respiration, ureagenesis, lipogenesis, bone resorption, electrolyte secretion, acid-base balance, and gluconeogenesis. In such processes, many CAs are significant therapeutic targets because of their inhibitory potentials especially in the treatment of some diseases such as edema, glaucoma, obesity, cancer, epilepsy, and osteoporosis. Acetylcholinesterase (AChE) and Butyrylcholinesterase (BuChE) inhibitors are also valuable compounds for different therapeutic applications including Alzheimer's disease. In this work, we report a fast and effective synthesis of 5-methyl-2,4-dihydro-3H-1,2,4-triazole-3-one's aryl Schiff base derivatives and also their CA and cholinesterases inhibitory properties. Our findings showed that these Schiff base derivatives, with triazole ring, found as strong CA and cholinesterases inhibitors.


Asunto(s)
Acetilcolinesterasa/metabolismo , Butirilcolinesterasa/metabolismo , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/metabolismo , Inhibidores de la Colinesterasa/farmacología , Triazoles/farmacología , Animales , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Electrophorus , Caballos , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Microondas , Estructura Molecular , Bases de Schiff/síntesis química , Bases de Schiff/química , Bases de Schiff/farmacología , Relación Estructura-Actividad , Triazoles/síntesis química , Triazoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA