Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Comput Methods Programs Biomed ; 191: 105397, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32092615

RESUMEN

BACKGROUND AND OBJECTIVE: Craniofacial asymmetry is a common growth disorder often caused by unilateral chewing. Although an early orthodontic treatment would avoid surgical procedures later in life, the uncertainty of defining the accurate sagittal midplane potentially leads to misdiagnosis and therefore inaccurate orthodontic treatment plans. This novel study aims to 3D-diagnose craniofacial complex malformations in children with unilateral crossbite (UXB) considering a midplane which compensates the asymmetric morphology. METHODS: The sagittal midplane of 20 children, fifteen of whom exhibited UXB, was computed by a PCA-based method which compensates the asymmetry mirroring the 3D models obtained from cone-beam computed tomography data. Once determined, one side of the data was mirrored using the computed midplane to visualize the malformations on the hard and soft tissues by 3D-computing the distances between both halves. Additionally, 31 skull's landmarks were manually placed in each model to study the principal variation modes and the significant differences in the group of subjects with and without UXB through PCA and Mann-Whitney U test analyses respectively. RESULTS: Morphological 3D-analysis showed pronounced deformities and aesthetic implications for patients with severe asymmetry (jaw deviation > 0.8 mm) in whole craniofacial system, while initial signs of asymmetry were found indistinctly in the mandible or maxilla. We detected significant (p < 0.05) malformations for example in mandibular ramus length (0.0086), maxillary palate width (0.0481) and condylar head width (0.0408). Craniofacial malformations increased the landmarks' variability in the group of patients with UXB over the control group requiring 8 variation modes more to define 99% of the sample' variability. CONCLUSIONS: Our findings demonstrated the viability of early diagnosis of craniofacial asymmetry through computing the accurate sagittal midplane which compensates the individual's asymmetrical morphology. Furthermore, this study provides important computational insights into the determination of craniofacial deformities which are caused by UXB, following some empirical findings of previous clinical studies. Hence, this computational approach can be useful for the development of new software in craniofacial surgery or for its use in biomedical research and clinical practice.


Asunto(s)
Cefalometría/métodos , Asimetría Facial/diagnóstico por imagen , Imagenología Tridimensional , Niño , Bases de Datos Factuales , Femenino , Humanos , Masculino , Análisis de Componente Principal
2.
Biomed Eng Online ; 18(1): 63, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31113423

RESUMEN

BACKGROUND: Segment fusion using interbody cages supplemented with pedicle screw fixation is the most common surgery for the treatment of low back pain. However, there is still much controversy regarding the use of cages in a stand-alone fashion. The goal of this work is to numerically compare the influence that each surgery has on lumbar biomechanics. METHODS: A non-linear FE model of the whole lumbar spine was developed to compare between two types of cages (OLYS and NEOLIF) with and without supplementary fixation. The motion of the whole spine was analysed and the biomechanical environment of the adjacent segments to the operated one was studied. Moreover, the risk of subsidence of the cages was qualitatively evaluated. RESULTS: A great ROM reduction occurred when supplementary fixation was used. This stiffening increased the stresses at the adjacent levels. It might be hypothesised that the overloading of these segments could be related with the clinically observed adjacent disc degeneration. Meanwhile, the stand-alone cages allowed for a wider movement, and therefore, the influence of the surgery on adjacent discs was much lower. Regarding the risk of subsidence, the contact pressure magnitude was similar for both intervertebral cage designs and near the value of the maximum tolerable pressure of the endplates. CONCLUSIONS: A minimally invasive posterior insertion of an intervertebral cage (OLYS or NEOLIF) was compared using a stand-alone design or adding supplementary fixation. The outcomes of these two techniques were compared, and although stand-alone cage may diminish the risk of disease progression to the adjacent discs, the spinal movement in this case could compromise the vertebral fusion and might present a higher risk of cage subsidence.


Asunto(s)
Análisis de Elementos Finitos , Tornillos Pediculares , Fusión Vertebral/instrumentación , Fenómenos Biomecánicos , Dolor de la Región Lumbar/cirugía , Vértebras Lumbares/cirugía , Riesgo , Resultado del Tratamiento
3.
J Biomech ; 88: 138-147, 2019 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-30948042

RESUMEN

Nucleotomy is the gold standard treatment for disc herniation and has proven ability to restore stability by creating a bony bridge without any additional fixation. However, the evolution of mineral density in the extant and new bone after nucleotomy and fixation techniques has to date not been investigated in detail. The main goal of this study is to determine possible mechanisms that may trigger the bone remodelling and formation processes. With that purpose, a finite element model of the L4-L5 spinal segment was used. Bone mineral density (BMD), new tissue composition, and endplate deflection were determined as indicators of lumbar fusion. A bone-remodelling algorithm and a tissue-healing algorithm, both mechanically driven, were implemented to predict vertebral bone alterations and fusion patterns after nucleotomy, internal fixation, and anterior plate placement. When considering an intact disc height, neither nucleotomy nor internal fixation were able to provide the necessary stability to promote bony fusion. However, when 75% of the disc height was considered, bone fusion was predicted for both techniques. By contrast, an anterior plate allowed bone fusion at all disc heights. A 50% disc-height reduction led to osteophyte formation in all cases. Changes in the intervertebral disc tissue caused BMD alterations in the endplates. From this observations it can be drawn that fusion may be self-induced by controlling the mechanical stabilisation without the need of additional fixation. The amount of tissue to be removed to achieve this stabilisation remains to be determined.


Asunto(s)
Remodelación Ósea , Discectomía Percutánea , Osteogénesis , Fusión Vertebral , Algoritmos , Densidad Ósea , Simulación por Computador , Análisis de Elementos Finitos , Humanos , Disco Intervertebral/fisiología , Disco Intervertebral/cirugía , Vértebras Lumbares/fisiología , Vértebras Lumbares/cirugía
4.
Comput Methods Programs Biomed ; 162: 211-219, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29903488

RESUMEN

BACKGROUND AND OBJECTIVE: Spinal degeneration and instability are commonly treated with interbody fusion cages either alone or supplemented with posterior instrumentation with the aim to immobilise the segment and restore intervertebral height. The purpose of this work is to establish a tool which may help to understand the effects of intervertebral cage design and placement on the biomechanical response of a patient-specific model to help reducing post-surgical complications such as subsidence and segment instability. METHODS: A 3D lumbar functional spinal unit (FSU) finite element model was created and a parametric model of an interbody cage was designed and introduced in the FSU. A Drucker-Prager Cap plasticity formulation was used to predict plastic strains and bone failure in the vertebrae. The effect of varying cage size, cross-sectional area, apparent stiffness and positioning was evaluated under 500 N preload followed by 7.5 Nm multidirectional rotation and the results were compared with the intact model. RESULTS: The most influential cage parameters on the FSU were size, curvature congruence with the endplates and cage placement. Segmental stiffness was higher when increasing the cross-sectional cage area in all loading directions and when the cage was anteriorly placed in all directions but extension. In general, the facet joint forces were reduced by increasing segmental stiffness. However, these forces were higher than in the intact model in most of the cases due to the displacement of the instantaneous centre of rotation. The highest plastic deformations took place at the caudal vertebra under flexion and increased for cages with greater stiffness. Thus, wider cages and a more anteriorly placement would increase the volume of failed bone and, therefore, the risk of subsidence. CONCLUSIONS: Cage geometry plays a crucial role in the success of lumbar surgery. General considerations such as larger cages may be applied as a guideline, but parameters such as curvature or cage placement should be determined for each specific patient. This model provides a proof-of-concept of a tool for the preoperative evaluation of lumbar surgical outcomes.


Asunto(s)
Vértebras Lumbares/diagnóstico por imagen , Rango del Movimiento Articular , Fusión Vertebral/instrumentación , Fenómenos Biomecánicos , Cadáver , Análisis de Elementos Finitos , Humanos , Imagenología Tridimensional , Fantasmas de Imagen
5.
Med Image Comput Comput Assist Interv ; 12(Pt 2): 275-82, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-20426122

RESUMEN

We have developed a system for computer-assisted surgical planning of tracheal surgeries. The system allows to plan the intervention based on CT images of the patient, and includes a virtual database of commercially available prostheses. Automatic segmentation of the trachea and apparent pathological structures is obtained using a modified region growing algorithm. A method for automatic adaptation of a finite element mesh allows to build a patient-specific biomechanical model for simulation of the expected performance of the implant under physiological movement (swallowing, sneezing). Laboratory experiments were performed to characterise the tissues present in the trachea, and movement models were obtained from fluoroscopic images of a patient. Results are reported on the planning and biomechanical simulation of two patients that underwent surgery at our hospital.


Asunto(s)
Modelos Biológicos , Prótesis e Implantes , Cirugía Asistida por Computador/métodos , Tráquea/fisiopatología , Tráquea/cirugía , Simulación por Computador , Humanos , Cuidados Preoperatorios/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA