Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Biol Chem ; 300(6): 107367, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38750796

RESUMEN

The main protease (Mpro) remains an essential therapeutic target for COVID-19 post infection intervention given its critical role in processing the majority of viral proteins encoded by the genome of severe acute respiratory syndrome related coronavirus 2 (SARS-CoV-2). Upon viral entry, the +ssRNA genome is translated into two long polyproteins (pp1a or the frameshift-dependent pp1ab) containing all the nonstructural proteins (nsps) required by the virus for immune modulation, replication, and ultimately, virion assembly. Included among these nsps is the cysteine protease Mpro (nsp5) which self-excises from the polyprotein, dimerizes, then sequentially cleaves 11 of the 15 cut-site junctions found between each nsp within the polyprotein. Many structures of Mpro (often bound to various small molecule inhibitors or peptides) have been detailed recently, including structures of Mpro bound to each of the polyprotein cleavage sequences, showing that Mpro can accommodate a wide range of targets within its active site. However, to date, kinetic characterization of the interaction of Mpro with each of its native cleavage sequences remains incomplete. Here, we present a robust and cost-effective FRET based system that benefits from a more consistent presentation of the substrate that is also closer in organization to the native polyprotein environment compared to previously reported FRET systems that use chemically modified peptides. Using this system, we were able to show that while each site maintains a similar Michaelis constant, the catalytic efficiency of Mpro varies greatly between cut-site sequences, suggesting a clear preference for the order of nsp processing.


Asunto(s)
Proteasas 3C de Coronavirus , Transferencia Resonante de Energía de Fluorescencia , Poliproteínas , SARS-CoV-2 , Humanos , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/química , COVID-19/virología , COVID-19/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Cinética , Poliproteínas/metabolismo , Poliproteínas/química , Proteolisis , SARS-CoV-2/enzimología , SARS-CoV-2/metabolismo , Proteínas Virales/metabolismo , Proteínas Virales/química , Proteínas Virales/genética
2.
Nat Commun ; 13(1): 5196, 2022 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-36057636

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the pathogen that causes COVID-19, produces polyproteins 1a and 1ab that contain, respectively, 11 or 16 non-structural proteins (nsp). Nsp5 is the main protease (Mpro) responsible for cleavage at eleven positions along these polyproteins, including at its own N- and C-terminal boundaries, representing essential processing events for viral assembly and maturation. Using C-terminally substituted Mpro chimeras, we have determined X-ray crystallographic structures of Mpro in complex with 10 of its 11 viral cleavage sites, bound at full occupancy intermolecularly in trans, within the active site of either the native enzyme and/or a catalytic mutant (C145A). Capture of both acyl-enzyme intermediate and product-like complex forms of a P2(Leu) substrate in the native active site provides direct comparative characterization of these mechanistic steps as well as further informs the basis for enhanced product release of Mpro's own unique C-terminal P2(Phe) cleavage site to prevent autoinhibition. We characterize the underlying noncovalent interactions governing binding and specificity for this diverse set of substrates, showing remarkable plasticity for subsites beyond the anchoring P1(Gln)-P2(Leu/Val/Phe), representing together a near complete analysis of a multiprocessing viral protease. Collectively, these crystallographic snapshots provide valuable mechanistic and structural insights for antiviral therapeutic development.


Asunto(s)
COVID-19 , Proteasas 3C de Coronavirus/metabolismo , Poliproteínas , SARS-CoV-2/fisiología , Cisteína Endopeptidasas/metabolismo , Humanos , Péptido Hidrolasas , Poliproteínas/química , Proteínas Virales/química , Rayos X
3.
Nat Commun ; 11(1): 5877, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33208735

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the pathogen that causes the disease COVID-19, produces replicase polyproteins 1a and 1ab that contain, respectively, 11 or 16 nonstructural proteins (nsp). Nsp5 is the main protease (Mpro) responsible for cleavage at eleven positions along these polyproteins, including at its own N- and C-terminal boundaries, representing essential processing events for subsequent viral assembly and maturation. We have determined X-ray crystallographic structures of this cysteine protease in its wild-type free active site state at 1.8 Å resolution, in its acyl-enzyme intermediate state with the native C-terminal autocleavage sequence at 1.95 Å resolution and in its product bound state at 2.0 Å resolution by employing an active site mutation (C145A). We characterize the stereochemical features of the acyl-enzyme intermediate including critical hydrogen bonding distances underlying catalysis in the Cys/His dyad and oxyanion hole. We also identify a highly ordered water molecule in a position compatible for a role as the deacylating nucleophile in the catalytic mechanism and characterize the binding groove conformational changes and dimerization interface that occur upon formation of the acyl-enzyme. Collectively, these crystallographic snapshots provide valuable mechanistic and structural insights for future antiviral therapeutic development including revised molecular docking strategies based on Mpro inhibition.


Asunto(s)
Betacoronavirus/enzimología , Cisteína Endopeptidasas/química , Proteínas no Estructurales Virales/química , Betacoronavirus/química , Sitios de Unión , Dominio Catalítico , Proteasas 3C de Coronavirus , Cristalografía por Rayos X , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Dimerización , Humanos , Modelos Moleculares , Mutación , Inhibidores de Proteasas/metabolismo , Conformación Proteica , SARS-CoV-2 , Especificidad por Sustrato , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
4.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 5): 722-34, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23633581

RESUMEN

The amino-terminal domain of cardiac troponin C (cNTnC) is an essential Ca(2+) sensor found in cardiomyocytes. It undergoes a conformational change upon Ca(2+) binding and transduces the signal to the rest of the troponin complex to initiate cardiac muscle contraction. Two classical EF-hand motifs (EF1 and EF2) are present in cNTnC. Under physiological conditions, only EF2 binds Ca(2+); EF1 is a vestigial site that has lost its function in binding Ca(2+) owing to amino-acid sequence changes during evolution. Proteins with EF-hand motifs are capable of binding divalent cations other than calcium. Here, the crystal structure of wild-type (WT) human cNTnC in complex with Cd(2+) is presented. The structure of Cd(2+)-bound cNTnC with the disease-related mutation L29Q, as well as a structure with the residue differences D2N, V28I, L29Q and G30D (NIQD), which have been shown to have functional importance in Ca(2+) sensing at lower temperatures in ectothermic species, have also been determined. The structures resemble the overall conformation of NMR structures of Ca(2+)-bound cNTnC, but differ significantly from a previous crystal structure of Cd(2+)-bound cNTnC in complex with deoxycholic acid. The subtle structural changes observed in the region near the mutations may play a role in the increased Ca(2+) affinity. The 1.4 Å resolution WT cNTnC structure, which is the highest resolution structure yet obtained for cardiac troponin C, reveals a Cd(2+) ion coordinated in the canonical pentagonal bipyramidal geometry in EF2 despite three residues in the loop being disordered. A Cd(2+) ion found in the vestigial ion-binding site of EF1 is coordinated in a noncanonical `distorted' octahedral geometry. A comparison of the ion coordination observed within EF-hand-containing proteins for which structures have been solved in the presence of Cd(2+) is presented. A refolded WT cNTnC structure is also presented.


Asunto(s)
Cadmio/metabolismo , Troponina C/química , Troponina C/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , Cadmio/toxicidad , Calcio/metabolismo , Cristalografía por Rayos X , Cisteína/química , Cardiopatías/inducido químicamente , Cardiopatías/genética , Modelos Moleculares , Mutación , Conformación Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Troponina C/genética
5.
J Biol Chem ; 288(18): 13068-81, 2013 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-23511637

RESUMEN

Yellowtail ascites virus (YAV) is an aquabirnavirus that causes ascites in yellowtail, a fish often used in sushi. Segment A of the YAV genome codes for a polyprotein (pVP2-VP4-VP3), where processing by its own VP4 protease yields the capsid protein precursor pVP2, the ribonucleoprotein-forming VP3, and free VP4. VP4 protease utilizes the rarely observed serine-lysine catalytic dyad mechanism. Here we have confirmed the existence of an internal cleavage site, preceding the VP4/VP3 cleavage site. The resulting C-terminally truncated enzyme (ending at Ala(716)) is active, as shown by a trans full-length VP4 cleavage assay and a fluorometric peptide cleavage assay. We present a crystal structure of a native active site YAV VP4 with the internal cleavage site trapped as trans product complexes and trans acyl-enzyme complexes. The acyl-enzyme complexes confirm directly the role of Ser(633) as the nucleophile. A crystal structure of the lysine general base mutant (K674A) reveals the acyl-enzyme and empty binding site states of VP4, which allows for the observation of structural changes upon substrate or product binding. These snapshots of three different stages in the VP4 protease reaction mechanism will aid in the design of anti-birnavirus compounds, provide insight into previous site-directed mutagenesis results, and contribute to understanding of the serine-lysine dyad protease mechanism. In addition, we have discovered that this protease contains a channel that leads from the enzyme surface (adjacent to the substrate binding groove) to the active site and the deacylating water.


Asunto(s)
Aquabirnavirus/enzimología , Proteínas de la Cápside/química , Serina Endopeptidasas/química , Aquabirnavirus/genética , Proteínas de la Cápside/genética , Cristalografía por Rayos X , Estructura Terciaria de Proteína , Serina Endopeptidasas/genética
6.
Biomol NMR Assign ; 7(2): 193-7, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22766963

RESUMEN

Herein are reported the mainchain (1)H, (13)C and (15)N chemical shift assignments and amide (15)N relaxation data for Escherichia coli DmsD, a 23.3 kDa protein responsible for the correct folding and translocation of the dimethyl sulfoxide reductase enzyme complex. In addition, the observed amide chemical shift perturbations resulting from complex formation with the reductase subunit DmsA leader peptide support a model in which the 44 residue peptide makes extensive contacts across the surface of the DmsD protein.


Asunto(s)
Proteínas Portadoras/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Chaperonas Moleculares/química , Resonancia Magnética Nuclear Biomolecular , Péptidos/metabolismo , Protones , Sitios de Unión , Isótopos de Carbono , Proteínas Portadoras/metabolismo , Proteínas de Escherichia coli/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Chaperonas Moleculares/metabolismo , Isótopos de Nitrógeno , Oxidación-Reducción , Péptidos/química
7.
J Mol Biol ; 413(3): 699-711, 2011 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-21920370

RESUMEN

The amino-terminal regulatory domain of cardiac troponin C (cNTnC) plays an important role as the calcium sensor for the troponin complex. Calcium binding to cNTnC results in conformational changes that trigger a cascade of events that lead to cardiac muscle contraction. The cardiac N-terminal domain of TnC consists of two EF-hand calcium binding motifs, one of which is dysfunctional in binding calcium. Nevertheless, the defunct EF-hand still maintains a role in cNTnC function. For its structural analysis by X-ray crystallography, human cNTnC with the wild-type primary sequence was crystallized under a novel crystallization condition. The crystal structure was solved by the single-wavelength anomalous dispersion method and refined to 2.2 Å resolution. The structure displays several novel features. Firstly, both EF-hand motifs coordinate cadmium ions derived from the crystallization milieu. Secondly, the ion coordination in the defunct EF-hand motif accompanies unusual changes in the protein conformation. Thirdly, deoxycholic acid, also derived from the crystallization milieu, is bound in the central hydrophobic cavity. This is reminiscent of the interactions observed for cardiac calcium sensitizer drugs that bind to the same core region and maintain the "open" conformational state of calcium-bound cNTnC. The cadmium ion coordination in the defunct EF-hand indicates that this vestigial calcium binding site retains the structural and functional elements that allow it to coordinate a cadmium ion. However, it is a result of, or concomitant with, large and unusual structural changes in cNTnC.


Asunto(s)
Cadmio/metabolismo , Ácido Desoxicólico/metabolismo , Corazón/fisiología , Troponina C/química , Troponina C/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Motivos EF Hand , Humanos , Modelos Moleculares , Conformación Molecular , Mutagénesis Sitio-Dirigida , Mutación/genética , Unión Proteica , Conformación Proteica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Troponina C/genética
8.
J Biol Chem ; 286(14): 12475-82, 2011 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-21288899

RESUMEN

Viruses of the Birnaviridae family are characterized by their bisegmented double-stranded RNA genome that resides within a single-shelled non-enveloped icosahedral particle. They infect birds, aquatic organisms, and insects. Tellina virus 1 (TV-1) is an Aquabirnavirus isolated from the mollusk Tellina tenuis. It encodes a polyprotein (NH2-pVP2-X-VP4-VP3-COOH) that is cleaved by the self-encoded protease VP4 to yield capsid precursor protein pVP2, peptide X, and ribonucleoprotein VP3. Here we report the crystal structure of an intramolecular (cis) acyl-enzyme complex of TV-1 VP4 at 2.1-Šresolution. The structure reveals how the enzyme can recognize its own carboxyl terminus during the VP4/VP3 cleavage event. The methyl side chains of Ala830(P1) and Ala828(P3) at the VP4/VP3 junction point into complementary shallow and hydrophobic S1 and S3 binding pockets adjacent to the VP4 catalytic residues: nucleophile Ser738 and general base Lys777. The electron density clearly shows that the carbonyl carbon of Ala830 is covalently attached via an ester bond to the Oγ of Ser738. A highly ordered water molecule in the active site is coordinated in the proper position to act as the deacylating water. A comparative analysis of this intramolecular (cis) acyl-enzyme structure with the previously solved intermolecular (trans) acyl-enzyme structure of infectious pancreatic necrosis virus VP4 explains the narrower specificity observed in the cleavage sites of TV-1 VP4.


Asunto(s)
Aquabirnavirus/metabolismo , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Cristalografía por Rayos X , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
9.
Artículo en Inglés | MEDLINE | ID: mdl-21301084

RESUMEN

Glucoamylase from Aspergillus niger is an industrially important biocatalyst that is utilized in the mass production of glucose from raw starch or soluble oligosaccharides. The G1 isoform consists of a catalytic domain and a starch-binding domain connected by a heavily glycosylated linker region. The amino-terminal catalytic domain of the G1 isoform generated by subtilisin cleavage has been crystallized at pH 8.5, which is a significantly higher pH condition than used for previously characterized glucoamylase crystals. The refined structure at 1.9 Å resolution reveals the active site of the enzyme in complex with both Tris and glycerol molecules. The ligands display both unique and analogous interactions with the substrate-binding site when compared with previous structures of homologous enzymes bound to inhibitors.


Asunto(s)
Aspergillus niger/enzimología , Glucano 1,4-alfa-Glucosidasa/química , Secuencia de Aminoácidos , Aspergillus niger/metabolismo , Sitios de Unión , Dominio Catalítico , Secuencia Conservada , Cristalización , Cristalografía por Rayos X , Disulfuros/química , Glucano 1,4-alfa-Glucosidasa/metabolismo , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Punto Isoeléctrico , Isoenzimas/química , Isoenzimas/metabolismo , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Peso Molecular , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Señales de Clasificación de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Solubilidad , Almidón/química , Almidón/metabolismo , Especificidad por Sustrato , Agua/química
10.
Artículo en Inglés | MEDLINE | ID: mdl-21206051

RESUMEN

Tellina virus 1 is an aquabirnavirus that was isolated from the sand-dwelling marine bivalve mollusc Tellina tenuis. The self-encoded protease viral protein 4 (VP4) processes its own polyprotein to yield the individual proteins VP2 and VP3 that are required for viral assembly. VP4 protease utilizes a serine-lysine catalytic dyad in its mechanism. A full-length VP4 construct was overexpressed in Escherichia coli and purified to homogeneity using nickel-affinity chromatography. Ion-exchange and size-exclusion chromatographic steps were utilized to isolate a monomeric fraction of the protein. The purified monomeric VP4 was subjected to limited proteolysis to yield crystallizable protein. Crystal growth was performed using the hanging-drop vapour-diffusion method and was carried out at room temperature (∼296 K). Hexagonal crystals grew in the presence of PEG 8000, ammonium sulfate and urea. These crystals diffracted to beyond 2.1 Šresolution and belonged to space group P6(4)22, with unit-cell parameters a=59.1, b=59.1, c=208.1 Å, one molecule in the asymmetric unit and a solvent content of 42%.


Asunto(s)
Aquabirnavirus/enzimología , Serina Endopeptidasas/química , Serina Endopeptidasas/aislamiento & purificación , Proteínas Virales/química , Proteínas Virales/aislamiento & purificación , Animales , Bivalvos/virología , Cristalización , Cristalografía por Rayos X , ADN Viral , Datos de Secuencia Molecular , Serina Endopeptidasas/genética , Proteínas Virales/genética
11.
Biochemistry ; 48(24): 5753-9, 2009 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-19435306

RESUMEN

Knowing the substrate specificity of a protease is useful in determining its physiological substrates, developing robust assays, and designing specific inhibitors against the enzyme. In this work, we report the development of a combinatorial peptide library method for systematically profiling the substrate specificity of endopeptidases. A fluorescent donor (Edans) and quencher (Dabcyl) pair was added to the C- and N-termini of a support-bound peptide. Protease cleavage of the peptide removed the N-terminal quencher, resulting in fluorescent beads, which were isolated and individually sequenced by partial Edman degradation and mass spectrometry (PED-MS) to reveal the peptide sequence, as well as the site of proteolytic cleavage. The method was validated with bovine trypsin and Escherichia coli leader peptidase and subsequently applied to determine the substrate specificity of a viral protease, VP4, derived from the blotched snakehead virus (BSNV). The results show that VP4 cleaves peptides with a consensus sequence of (Abu/Ala/Pro)-X-Ala downward arrowX, in agreement with the previously observed cleavage sites in its protein substrates. Resynthesis and a solution-phase assay of several representative sequences against VP4 confirmed the library screening results.


Asunto(s)
Biblioteca de Péptidos , Serina Endopeptidasas/química , Proteínas Virales/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Birnaviridae/enzimología , Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Datos de Secuencia Molecular , Péptidos/química , Serina Endopeptidasas/metabolismo , Especificidad por Sustrato , Proteínas Virales/metabolismo
12.
J Mol Biol ; 379(3): 457-70, 2008 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-18462752

RESUMEN

The protein CsaA has been proposed to function as a protein secretion chaperone in bacteria that lack the Sec-dependent protein-targeting chaperone SecB. CsaA is a homodimer with two putative substrate-binding pockets, one in each monomer. To test the hypothesis that these cavities are indeed substrate-binding sites able to interact with other polypeptide chains, we selected a peptide that bound to CsaA from a random peptide library displayed on phage. Presented here is the structure of CsaA from Agrobacterium tumefaciens (AtCsaA) solved in the presence and absence of the selected peptide. To promote co-crystallization, the sequence for this peptide was genetically fused to the amino-terminus of AtCsaA. The resulting 1.65 A resolution crystal structure reveals that the tethered peptide from one AtCsaA molecule binds to the proposed substrate-binding pocket of a symmetry-related molecule possibly mimicking the interaction between a pre-protein substrate and CsaA. The structure shows that the peptide lies in an extended conformation with alanine, proline and glutamine side chains pointing into the binding pocket. The peptide interacts with the atoms of the AtCsaA-binding pocket via seven direct hydrogen bonds. The side chain of a conserved pocket residue, Arg76, has an "up" conformation when the CsaA-binding site is empty and a "down" conformation when the CsaA-binding site is occupied, suggesting that this residue may function to stabilize the peptide in the binding cavity. The presented aggregation assays, phage-display analysis and structural analysis are consistent with AtCsaA being a general chaperone. The properties of the proposed CsaA-binding pocket/peptide interactions are compared to those from other structurally characterized molecular chaperones.


Asunto(s)
Agrobacterium tumefaciens/metabolismo , Proteínas Bacterianas/química , Chaperonas Moleculares/química , Conformación Proteica , Secuencia de Aminoácidos , Animales , Bacillus subtilis/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Dimerización , Enlace de Hidrógeno , Ligandos , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Biblioteca de Péptidos , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Alineación de Secuencia , Thermus thermophilus/química
13.
J Biol Chem ; 282(34): 24928-37, 2007 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-17553791

RESUMEN

Infectious pancreatic necrosis virus (IPNV), an aquatic birnavirus that infects salmonid fish, encodes a large polyprotein (NH(2)-pVP2-VP4-VP3-COOH) that is processed through the proteolytic activity of its own protease, VP4, to release the proteins pVP2 and VP3. pVP2 is further processed to give rise to the capsid protein VP2 and three peptides that are incorporated into the virion. Reported here are two crystal structures of the IPNV VP4 protease solved from two different crystal symmetries. The electron density at the active site in the triclinic crystal form, refined to 2.2-A resolution, reveals the acyl-enzyme complex formed with an internal VP4 cleavage site. The complex was generated using a truncated enzyme in which the general base lysine was substituted. Inside the complex, the nucleophilic Ser(633)Ogamma forms an ester bond with the main-chain carbonyl of the C-terminal residue, Ala(716), of a neighboring VP4. The structure of this substrate-VP4 complex allows us to identify the S1, S3, S5, and S6 substrate binding pockets as well as other substrate-VP4 interactions and therefore provides structural insights into the substrate specificity of this enzyme. The structure from the hexagonal crystal form, refined to 2.3-A resolution, reveals the free-binding site of the protease. Three-dimensional alignment with the VP4 of blotched snakehead virus, another birnavirus, shows that the overall structure of VP4 is conserved despite a low level of sequence identity ( approximately 19%). The structure determinations of IPNV VP4, the first of an acyl-enzyme complex for a Ser/Lys dyad protease, provide insights into the catalytic mechanism and substrate recognition of this type of protease.


Asunto(s)
Serina Endopeptidasas/química , Alanina/química , Secuencia de Aminoácidos , Sitios de Unión , Catálisis , Clonación Molecular , Cristalografía por Rayos X , Electrones , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Pliegue de Proteína , Estructura Terciaria de Proteína , Selenometionina/química , Homología de Secuencia de Aminoácido , Serina Endopeptidasas/metabolismo , Especificidad por Sustrato
14.
J Biol Chem ; 282(1): 417-25, 2007 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-17077081

RESUMEN

Signal peptidase functions to cleave signal peptides from preproteins at the cell membrane. It has a substrate specificity for small uncharged residues at -1 (P1) and aliphatic residues at the -3 (P3) position. Previously, we have reported that certain alterations of the Ile-144 and Ile-86 residues in Escherichia coli signal peptidase I (SPase) can change the specificity such that signal peptidase is able to cleave pro-OmpA nuclease A in vitro after phenylalanine or asparagine residues at the -1 position (Karla, A., Lively, M. O., Paetzel, M. and Dalbey, R. (2005) J. Biol. Chem. 280, 6731-6741). In this study, screening of a fluorescence resonance energy transfer-based peptide library revealed that the I144A, I144C, and I144C/I86T SPase mutants have a more relaxed substrate specificity at the -3 position, in comparison to the wild-type SPase. The double mutant tolerated arginine, glutamine, and tyrosine residues at the -3 position of the substrate. The altered specificity of the I144C/I86T mutant was confirmed by in vivo processing of pre-beta-lactamase containing non-canonical arginine and glutamine residues at the -3 position. This work establishes Ile-144 and Ile-86 as key P3 substrate specificity determinants for signal peptidase I and demonstrates the power of the fluorescence resonance energy transfer-based peptide library approach in defining the substrate specificity of proteases.


Asunto(s)
Escherichia coli/enzimología , Proteínas de la Membrana/genética , Mutación , Serina Endopeptidasas/genética , Asparagina/química , Transferencia Resonante de Energía de Fluorescencia , Biblioteca de Genes , Isoleucina/química , Modelos Químicos , Modelos Moleculares , Biblioteca de Péptidos , Péptidos/química , Fenilalanina/química , Unión Proteica , Estructura Terciaria de Proteína , Especificidad por Sustrato
15.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 62(Pt 12): 1235-8, 2006 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17142905

RESUMEN

In viruses belonging to the Birnaviridae family, virus protein 4 (VP4) is the viral protease responsible for the proteolytic maturation of the polyprotein encoding the major capsid proteins (VP2 and VP3). Infectious pancreatic necrosis virus (IPNV), the prototype of the aquabirnavirus genus, is the causative agent of a contagious disease in fish which has a large economic impact on aquaculture. IPNV VP4 is a 226-residue (24.0 kDa) serine protease that utilizes a Ser/Lys catalytic dyad mechanism (Ser633 and Lys674). Several truncated and mutant forms of VP4 were expressed in a recombinant expression system, purified and screened for crystallization. Two different crystal forms diffract beyond 2.4 A resolution. A triclinic crystal derived from one mutant construct has unit-cell parameters a = 41.7, b = 69.6, c = 191.6 A, alpha = 93.0, beta = 95.1, gamma = 97.7 degrees. A hexagonal crystal with space group P6(1)22/P6(5)22 derived from another mutant construct has unit-cell parameters a = 77.4, b = 77.4, c = 136.9 A.


Asunto(s)
Virus de la Necrosis Pancreática Infecciosa/química , Serina Endopeptidasas/química , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Escherichia coli/metabolismo , Mutagénesis Sitio-Dirigida , Serina Endopeptidasas/genética , Serina Endopeptidasas/aislamiento & purificación
16.
Artículo en Inglés | MEDLINE | ID: mdl-16582483

RESUMEN

Blotched snakehead virus (BSNV) is a member of the Birnaviridae family that requires a virally encoded protease known as VP4 in order to process its polyprotein into viral capsid protein precursors (pVP2 and VP3). VP4 belongs to a family of serine proteases that utilize a serine/lysine catalytic dyad mechanism. A mutant construct of VP4 with a short C-terminal truncation was overexpressed in Escherichia coli and purified to homogeneity for crystallization. Using the sitting-drop vapour-diffusion method at room temperature, protein crystals with two distinct morphologies were observed. Cubic crystals grown in PEG 2000 MME and magnesium acetate at pH 8.5 belong to space group I23, with unit-cell parameters a = b = c = 143.8 angstroms. Trigonal crystals grown in ammonium sulfate and glycerol at pH 8.5 belong to space group P321/P312, with unit-cell parameters a = b = 158.2, c = 126.4 angstroms.


Asunto(s)
Birnaviridae/enzimología , Serina Endopeptidasas/genética , Secuencia de Bases , Cristalografía por Rayos X , Cartilla de ADN , Electroforesis en Gel de Poliacrilamida , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Dispersión de Radiación , Serina Endopeptidasas/química , Serina Endopeptidasas/aislamiento & purificación
17.
J Mol Biol ; 358(5): 1378-89, 2006 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-16584747

RESUMEN

The blotched snakehead virus (BSNV), an aquatic birnavirus, encodes a polyprotein (NH2-pVP2-X-VP4-VP3-COOH) that is processed through the proteolytic activity of its own protease (VP4) to liberate itself and the viral proteins pVP2, X and VP3. The protein pVP2 is further processed by VP4 to give rise to the capsid protein VP2 and four structural peptides. We report here the crystal structure of a VP4 protease from BSNV, which displays a catalytic serine/lysine dyad in its active site. This is the first crystal structure of a birnavirus protease and the first crystal structure of a viral protease that utilizes a lysine general base in its catalytic mechanism. The topology of the VP4 substrate binding site is consistent with the enzymes substrate specificity and a nucleophilic attack from the si-face of the substrates scissile bond. Despite low levels of sequence identity, VP4 shows similarities in its active site to other characterized Ser/Lys proteases such as signal peptidase, LexA protease and Lon protease. Together, the structure of VP4 provides insights into the mechanism of a recently characterized clan of serine proteases that utilize a lysine general base and reveals the structure of potential targets for antiviral therapy, especially for other related and economically important viruses, such as infectious bursal disease virus in poultry and infectious pancreatic necrosis virus in aquaculture.


Asunto(s)
Aquabirnavirus/enzimología , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Secuencia de Aminoácidos , Aquabirnavirus/genética , Dominio Catalítico , Cristalografía por Rayos X , Lisina/química , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Serina/química , Serina Endopeptidasas/genética
18.
J Biol Chem ; 280(8): 6731-41, 2005 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-15598653

RESUMEN

Signal peptidase, which removes signal peptides from preproteins, has a substrate specificity for small uncharged residues at -1 (P1) and small or larger aliphatic residues at the -3 (P3) position. Structures of the catalytic domain with a 5S-penem inhibitor and a lipopeptide inhibitor reveal candidate residues that make up the S1 and S3 pockets that bind the P1 and P3 specificity residues of the preprotein substrate. We have used site-directed mutagenesis, mass spectrometric analysis, and in vivo and in vitro activity assays as well as molecular modeling to examine the importance of the substrate pocket residues. Generally, we find that the S1 and S3 binding sites can tolerate changes that are expected to increase or decrease the size of the pocket without large effects on activity. One residue that contributes to the high fidelity of cleavage of signal peptidase is the Ile-144 residue. Changes of the Ile-144 residue to cysteine result in cleavage at multiple sites, as determined by mass spectrometry and Edman sequencing analysis. In addition, we find that signal peptidase is able to cleave after phenylalanine at the -1 residue in a double mutant in which both Ile-86 and Ile-144 were changed to an alanine. Also, alteration of the Ile-144 and Ile-86 residues to the corresponding residues found in the homologous Imp1 protease changes the specificity to promote cleavage following a -1 Asn residue. This work shows that Ile-144 and Ile-86 contribute to the signal peptidase substrate specificity and that Ile-144 is important for the accuracy of the cleavage reaction.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Aminoácidos , Proteínas de la Membrana Bacteriana Externa/metabolismo , Sitios de Unión , Isoleucina , Espectrometría de Masas , Proteínas de la Membrana/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación Proteica , Precursores de Proteínas/metabolismo , Serina Endopeptidasas/genética , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA