Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Hematol Oncol ; 17(1): 91, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39380002

RESUMEN

BACKGROUND: The epigenetic factors KAT6A (MOZ/MYST3) and KMT2A (MLL/MLL1) interact in normal hematopoiesis to regulate progenitors' self-renewal. Both proteins are recurrently translocated in AML, leading to impairment of critical differentiation pathways in these malignant cells. We evaluated the potential of different KAT6A therapeutic targeting strategies to alter the growth of KAT6A and KMT2A rearranged AMLs. METHODS: We investigated the action and potential mechanisms of the first-in-class KAT6A inhibitor, WM-1119 in KAT6A and KMT2A rearranged (KAT6Ar and KMT2Ar) AML using cellular (flow cytometry, colony assays, cell growth) and molecular (shRNA knock-down, CRISPR knock-out, bulk and single-cell RNA-seq, ChIP-seq) assays. We also used two novel genetic murine KAT6A models combined with the most common KMT2Ar AML, KMT2A::MLLT3 AML. In these murine models, the catalytic activity of KAT6A, or the whole protein, can be conditionally abrogated or deleted. These models allowed us to compare the effects of specific KAT6A KAT activity inhibition with the complete deletion of the whole protein. Finally, we also tested these therapeutic approaches on human AML cell lines and primary patient AMLs. RESULTS: We found that WM-1119 completely abrogated the proliferative and clonogenic potential of KAT6Ar cells in vitro. WM-1119 treatment was associated with a dramatic increase in myeloid differentiation program. The treatment also decreased stemness and leukemia pathways at the transcriptome level and led to loss of binding of the fusion protein at critical regulators of these pathways. In contrast, our pharmacologic and genetic results indicate that the catalytic activity of KAT6A plays a more limited role in KMT2Ar leukemogenicity, while targeting the whole KAT6A protein dramatically affects leukemic potential in murine KMT2A::MLLT3 AML. CONCLUSION: Our study indicates that inhibiting KAT6A KAT activity holds compelling promise for KAT6Ar AML patients. In contrast, targeted degradation of KAT6A, and not just its catalytic activity, may represent a more appropriate therapeutic approach for KMT2Ar AMLs.


Asunto(s)
Histona Acetiltransferasas , N-Metiltransferasa de Histona-Lisina , Leucemia Mieloide Aguda , Proteína de la Leucemia Mieloide-Linfoide , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Animales , Proteína de la Leucemia Mieloide-Linfoide/genética , Humanos , Ratones , N-Metiltransferasa de Histona-Lisina/genética , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/antagonistas & inhibidores , Reordenamiento Génico , Línea Celular Tumoral
2.
Methods Cell Biol ; 189: 1-21, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39393878

RESUMEN

Despite being tightly regulated, messenger RNA (mRNA) translation, a manner in which cells control expression of genes and rapidly respond to stimuli, is highly dysfunctional and plastic in pathologies including cancer. Conversely, the investigation of molecular mechanisms whereby mRNA translation becomes aberrant in cancer, as well as inhibition thereof, become critical in developing novel therapeutic approaches. More specifically, in malignancies such as chronic lymphocytic leukemia in which aberrant global and transcript specific translation has been linked with poorer patient outcomes, targeting translation is a relevant approach, with various translation inhibitors under development. Here we elaborate on a protein synthesis assay by flow cytometry, O-propargyl-puromycin, demonstrating global mRNA translation rate with a variety of different applications including cell lines, primary cells or co-culture systems in vitro. This method provides a comprehensive tool in quantifying the rate of global mRNA translation in cancer cells, as well as that of the tumor microenvironment cells, or in response to inhibitory therapeutic agents while offering the possibility to simultaneously assess other cellular markers.


Asunto(s)
Biosíntesis de Proteínas , Puromicina , ARN Mensajero , Microambiente Tumoral , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Puromicina/farmacología , Leucemia/genética , Leucemia/patología , Citometría de Flujo/métodos , Línea Celular Tumoral , Técnicas de Cocultivo/métodos
3.
STAR Protoc ; 5(3): 103244, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39106179

RESUMEN

Here, we present a protocol for the direct isolation of small extracellular vesicles (sEVs) from the spleen of preclinical murine models of leukemia using ultracentrifugation. We describe steps for tissue collection, sample preparation, ultracentrifugation-based isolation, and sEV characterization. This protocol allows for efficient enrichment of both leukemia and its microenvironment-derived sEV (LME-sEV), providing a valuable tool for studying their composition and functional roles. Potential applications include investigating the role of sEV in leukemia progression and identifying biomarkers. For complete details on the use and execution of this protocol, please refer to Gargiulo et al.1.


Asunto(s)
Vesículas Extracelulares , Leucemia , Bazo , Ultracentrifugación , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Ultracentrifugación/métodos , Animales , Ratones , Bazo/citología , Bazo/metabolismo , Bazo/patología , Leucemia/patología , Modelos Animales de Enfermedad , Humanos
4.
Methods Cell Biol ; 188: 109-129, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38880520

RESUMEN

Despite being the most common adult leukemia in the western world, Chronic Lymphocytic Leukemia (CLL) remains a life-threatening and incurable disease. Efforts to develop new treatments are highly dependent on the availability of appropriate mouse models for pre-clinical testing. The Eµ-TCL1 mouse model is the most established pre-clinical approach to study CLL pathobiology and response to treatment, backed by numerous studies highlighting its resemblance to the most aggressive form of this malignancy. In contrast to the transgenic Eµ-TCL1 model, employing the adoptive transfer of Eµ-TCL1-derived splenocytes in immunocompetent C57BL/6 mice results in a comparably rapid (e.g., leukemic development within weeks compared to months in the transgenic model) and reliable model mimicking CLL. In this chapter, we would like to provide readers with a thoroughly optimized, detailed, and comprehensive protocol to use the adoptive transfer Eµ-TCL1 model in their research.


Asunto(s)
Traslado Adoptivo , Leucemia Linfocítica Crónica de Células B , Animales , Humanos , Ratones , Traslado Adoptivo/métodos , Modelos Animales de Enfermedad , Leucemia Linfocítica Crónica de Células B/terapia , Leucemia Linfocítica Crónica de Células B/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Proto-Oncogénicas , Bazo
6.
Cell Rep ; 43(3): 113868, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38421868

RESUMEN

Modeling tumor metabolism in vitro remains challenging. Here, we used galactose as an in vitro tool compound to mimic glycolytic limitation. In contrast to the established idea that high glycolytic flux reduces pyruvate kinase isozyme M2 (PKM2) activity to support anabolic processes, we have discovered that glycolytic limitation also affects PKM2 activity. Surprisingly, despite limited carbon availability and energetic stress, cells induce a near-complete block of PKM2 to divert carbons toward serine metabolism. Simultaneously, TCA cycle flux is sustained, and oxygen consumption is increased, supported by glutamine. Glutamine not only supports TCA cycle flux but also serine synthesis via distinct mechanisms that are directed through PKM2 inhibition. Finally, deleting mitochondrial one-carbon (1C) cycle reversed the PKM2 block, suggesting a potential formate-dependent crosstalk that coordinates mitochondrial 1C flux and cytosolic glycolysis to support cell survival and proliferation during nutrient-scarce conditions.


Asunto(s)
Glutamina , Piruvato Quinasa , Piruvato Quinasa/metabolismo , Glutamina/metabolismo , Glucólisis , Carbono , Serina/metabolismo
8.
Oncoimmunology ; 12(1): 2276490, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37937211

RESUMEN

Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in the western world. It is characterized by a high dependency on interactions with the surrounding immune landscape, highlighting its suitability for immune-mediated therapeutic interventions. We recently revealed that the cytokine IL-27 exerts a strong anti-tumor role in CLL through a T-cell-mediated mechanism.


Asunto(s)
Interleucina-27 , Leucemia Linfocítica Crónica de Células B , Adulto , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Citocinas , Linfocitos T , Terapia de Inmunosupresión
10.
Haematologica ; 108(11): 3011-3024, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37345470

RESUMEN

Chronic lymphocytic leukemia (CLL) cells are highly dependent on interactions with the immunosuppressive tumor microenvironment (TME) for survival and proliferation. In the search for novel treatments, pro-inflammatory cytokines have emerged as candidates to reactivate the immune system. Among those, interleukin 27 (IL-27) has recently gained attention, but its effects differ among malignancies. Here, we utilized the Eµ-TCL1 and EBI3 knock-out mouse models as well as clinical samples from patients to investigate the role of IL-27 in CLL. Characterization of murine leukemic spleens revealed that the absence of IL-27 leads to enhanced CLL development and a more immunosuppressive TME in transgenic mice. Gene-profiling of T-cell subsets from EBI3 knock-out highlighted transcriptional changes in the CD8+ T-cell population associated with T-cell activation, proliferation, and cytotoxicity. We also observed an increased anti-tumor activity of CD8+ T cells in the presence of IL-27 ex vivo with murine and clinical samples. Notably, IL-27 treatment led to the reactivation of autologous T cells from CLL patients. Finally, we detected a decrease in IL-27 serum levels during CLL development in both pre-clinical and patient samples. Altogether, we demonstrated that IL-27 has a strong anti-tumorigenic role in CLL and postulate this cytokine as a promising treatment or adjuvant for this malignancy.


Asunto(s)
Interleucina-27 , Leucemia Linfocítica Crónica de Células B , Animales , Humanos , Ratones , Linfocitos T CD8-positivos , Citocinas , Inmunosupresores , Leucemia Linfocítica Crónica de Células B/patología , Ratones Transgénicos , Subgrupos de Linfocitos T/patología , Microambiente Tumoral
11.
Nat Metab ; 5(4): 642-659, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37012496

RESUMEN

Cancer cells fuel their increased need for nucleotide supply by upregulating one-carbon (1C) metabolism, including the enzymes methylenetetrahydrofolate dehydrogenase-cyclohydrolase 1 and 2 (MTHFD1 and MTHFD2). TH9619 is a potent inhibitor of dehydrogenase and cyclohydrolase activities in both MTHFD1 and MTHFD2, and selectively kills cancer cells. Here, we reveal that, in cells, TH9619 targets nuclear MTHFD2 but does not inhibit mitochondrial MTHFD2. Hence, overflow of formate from mitochondria continues in the presence of TH9619. TH9619 inhibits the activity of MTHFD1 occurring downstream of mitochondrial formate release, leading to the accumulation of 10-formyl-tetrahydrofolate, which we term a 'folate trap'. This results in thymidylate depletion and death of MTHFD2-expressing cancer cells. This previously uncharacterized folate trapping mechanism is exacerbated by physiological hypoxanthine levels that block the de novo purine synthesis pathway, and additionally prevent 10-formyl-tetrahydrofolate consumption for purine synthesis. The folate trapping mechanism described here for TH9619 differs from other MTHFD1/2 inhibitors and antifolates. Thus, our findings uncover an approach to attack cancer and reveal a regulatory mechanism in 1C metabolism.


Asunto(s)
Metilenotetrahidrofolato Deshidrogenasa (NADP) , Neoplasias , Metilenotetrahidrofolato Deshidrogenasa (NADP)/genética , Metilenotetrahidrofolato Deshidrogenasa (NADP)/metabolismo , Ácido Fólico/metabolismo , Formiatos , Purinas , Tetrahidrofolatos
12.
Blood ; 141(26): 3166-3183, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37084385

RESUMEN

Dysregulation of messenger RNA (mRNA) translation, including preferential translation of mRNA with complex 5' untranslated regions such as the MYC oncogene, is recognized as an important mechanism in cancer. Here, we show that both human and murine chronic lymphocytic leukemia (CLL) cells display a high translation rate, which is inhibited by the synthetic flavagline FL3, a prohibitin (PHB)-binding drug. A multiomics analysis performed in samples from patients with CLL and cell lines treated with FL3 revealed the decreased translation of the MYC oncogene and of proteins involved in cell cycle and metabolism. Furthermore, inhibiting translation induced a proliferation arrest and a rewiring of MYC-driven metabolism. Interestingly, contrary to other models, the RAS-RAF-(PHBs)-MAPK pathway is neither impaired by FL3 nor implicated in translation regulation in CLL cells. Here, we rather show that PHBs are directly associated with the eukaryotic initiation factor (eIF)4F translation complex and are targeted by FL3. Knockdown of PHBs resembled FL3 treatment. Importantly, inhibition of translation controlled CLL development in vivo, either alone or combined with immunotherapy. Finally, high expression of translation initiation-related genes and PHBs genes correlated with poor survival and unfavorable clinical parameters in patients with CLL. Overall, we demonstrated that translation inhibition is a valuable strategy to control CLL development by blocking the translation of several oncogenic pathways including MYC. We also unraveled a new and direct role of PHBs in translation initiation, thus creating new therapeutic opportunities for patients with CLL.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Ratones , Animales , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/metabolismo , Factor 4F Eucariótico de Iniciación/genética , Prohibitinas , Genes myc , ARN Mensajero/genética
13.
Front Oncol ; 13: 1122699, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968995

RESUMEN

Hairy cell leukemia (HCL) is an incurable, rare lymphoproliferative hematological malignancy of mature B cAlthough first line therapy with purine analogues leads to positive results, almost half of HCL patients relapse after 5-10 years, and standard treatment may not be an option due to intolerance or refractoriness. Proliferation and survival of HCL cells is regulated by surrounding accessory cells and soluble signals present in the tumor microenvironment, which actively contributes to disease progression. In vitro studies show that different therapeutic approaches tested in HCL impact the tumor microenvironment, and that this milieu offers a protection affecting treatment efficacy. Herein we explore the effects of the tumor microenvironment to different approved and experimental therapeutic options for HCL. Dissecting the complex interactions between leukemia cells and their milieu will be essential to develop new targeted therapies for HCL patients.

14.
Blood Cancer Discov ; 4(1): 54-77, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36108149

RESUMEN

Small extracellular vesicle (sEV, or exosome) communication among cells in the tumor microenvironment has been modeled mainly in cell culture, whereas their relevance in cancer pathogenesis and progression in vivo is less characterized. Here we investigated cancer-microenvironment interactions in vivo using mouse models of chronic lymphocytic leukemia (CLL). sEVs isolated directly from CLL tissue were enriched in specific miRNA and immune-checkpoint ligands. Distinct molecular components of tumor-derived sEVs altered CD8+ T-cell transcriptome, proteome, and metabolome, leading to decreased functions and cell exhaustion ex vivo and in vivo. Using antagomiRs and blocking antibodies, we defined specific cargo-mediated alterations on CD8+ T cells. Abrogating sEV biogenesis by Rab27a/b knockout dramatically delayed CLL pathogenesis. This phenotype was rescued by exogenous leukemic sEV or CD8+ T-cell depletion. Finally, high expression of sEV-related genes correlated with poor outcomes in CLL patients, suggesting sEV profiling as a prognostic tool. In conclusion, sEVs shape the immune microenvironment during CLL progression. SIGNIFICANCE: sEVs produced in the leukemia microenvironment impair CD8+ T-cell mediated antitumor immune response and are indispensable for leukemia progression in vivo in murine preclinical models. In addition, high expression of sEV-related genes correlated with poor survival and unfavorable clinical parameters in CLL patients. See related commentary by Zhong and Guo, p. 5. This article is highlighted in the In This Issue feature, p. 1.


Asunto(s)
Vesículas Extracelulares , Leucemia Linfocítica Crónica de Células B , Ratones , Animales , Leucemia Linfocítica Crónica de Células B/genética , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/patología , Transcriptoma , Inmunidad , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patología , Microambiente Tumoral/genética
15.
Oncoimmunology ; 11(1): 2127507, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36185808

RESUMEN

Recently, small extracellular vesicles (sEVs) secreted in vivo from chronic lymphocytic leukemia (CLL) preclinical murine models were characterized. Leukemia microenvironment sEV (LME-sEVs) selectively target CD8+ T-cells, inducing exhaustion and hampering anti-tumor immune response. Additionally, a sEV-related gene expression correlated with patient treatment-free survival, overall survival and clinical parameters.


Asunto(s)
Vesículas Extracelulares , Leucemia Linfocítica Crónica de Células B , Animales , Linfocitos T CD8-positivos , Vesículas Extracelulares/metabolismo , Humanos , Evasión Inmune , Leucemia Linfocítica Crónica de Células B/diagnóstico , Leucemia Linfocítica Crónica de Células B/metabolismo , Ratones , Microambiente Tumoral
16.
Front Immunol ; 13: 781364, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35296093

RESUMEN

Regulatory T cells (Tregs) are capable of inhibiting the proliferation, activation and function of T cells and play an important role in impeding the immune response to cancer. In chronic lymphocytic leukemia (CLL) a dysfunctional immune response and elevated percentage of effector-like phenotype Tregs have been described. In this study, using the Eµ-TCL1 mouse model of CLL, we evaluated the changes in the Tregs phenotype and their expansion at different stages of leukemia progression. Importantly, we show that Tregs depletion in DEREG mice triggered the expansion of new anti-leukemic cytotoxic T cell clones leading to leukemia eradication. In TCL1 leukemia-bearing mice we identified and characterized a specific Tregs subpopulation, the phenotype of which suggests its role in the formation of an immunosuppressive microenvironment, supportive for leukemia survival and proliferation. This observation was also confirmed by the gene expression profile analysis of these TCL1-specific Tregs. The obtained data on Tregs are consistent with those described so far, however, above all show that the changes in the Tregs phenotype described in CLL result from the formation of a specific, described in this study Tregs subpopulation. In addition, functional tests revealed the ability of Tregs to inhibit T cells that recognize model antigens expressed by leukemic cells. Moreover, inhibition of Tregs with a MALT1 inhibitor provided a therapeutic benefit, both as monotherapy and also when combined with an immune checkpoint inhibitor. Altogether, activation of Tregs appears to be crucial for CLL progression.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Animales , Modelos Animales de Enfermedad , Inmunidad , Inmunosupresores/uso terapéutico , Ratones , Linfocitos T Reguladores , Microambiente Tumoral
18.
Cancers (Basel) ; 13(18)2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34572746

RESUMEN

Chronic lymphocytic leukemia (CLL) is the most frequent leukemia in the elderly and is characterized by the accumulation of mature B lymphocytes in peripheral blood and primary lymphoid organs. In order to proliferate, leukemic cells are highly dependent on complex interactions with their microenvironment in proliferative niches. Not only soluble factors and BCR stimulation are important for their survival and proliferation, but also the activation of transcription factors through different signaling pathways. The aryl hydrocarbon receptor (AHR) and hypoxia-inducible factor (HIF)-1α are two transcription factors crucial for cancer development, whose activities are dependent on tumor microenvironment conditions, such as the presence of metabolites from the tryptophan pathway and hypoxia, respectively. In this study, we addressed the potential role of AHR and HIF-1α in chronic lymphocytic leukemia (CLL) development in vivo. To this end, we crossed the CLL mouse model Eµ-TCL1 with the corresponding transcription factor-conditional knock-out mice to delete one or both transcription factors in CD19+ B cells only. Despite AHR and HIF-1α being activated in CLL cells, deletion of either or both of them had no impact on CLL progression or survival in vivo, suggesting that these transcription factors are not crucial for leukemogenesis in CLL.

19.
Front Oncol ; 11: 598319, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34381700

RESUMEN

Current standard treatment of patients with hairy cell leukemia (HCL), a chronic B-cell neoplasia of low incidence that affects the elderly, is based on the administration of purine analogs such as cladribine. This chemotherapy approach shows satisfactory responses, but the disease relapses, often repeatedly. Venetoclax (ABT-199) is a Bcl-2 inhibitor currently approved for the treatment of chronic lymphocytic leukemia (CLL) and acute myeloid leukemia (AML) in adult patients ineligible for intensive chemotherapy. Given that HCL cells express Bcl-2, our aim was to evaluate venetoclax as a potential therapy for HCL. We found that clinically relevant concentrations of venetoclax (0.1 and 1 µM) induced primary HCL cell apoptosis in vitro as measured by flow cytometry using Annexin V staining. As microenvironment induces resistance to venetoclax in CLL, we also evaluated its effect in HCL by testing the following stimuli: activated T lymphocytes, stromal cells, TLR-9 agonist CpG, and TLR-2 agonist PAM3. We found decreased levels of venetoclax-induced cytotoxicity in HCL cells exposed for 48 h to any of these stimuli, suggesting that leukemic B cells from HCL patients are sensitive to venetoclax, but this sensitivity can be overcome by signals from the microenvironment. We propose that the combination of venetoclax with drugs that target the microenvironment might improve its efficacy in HCL.

20.
Front Immunol ; 12: 619069, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34108958

RESUMEN

Natural killer (NK) cells are innate effector lymphocytes with strong antitumor effects against hematologic malignancies such as chronic lymphocytic leukemia (CLL). However, NK cells fail to control CLL progression on the long term. For effective lysis of their targets, NK cells use a specific cell-cell interface, known as the immunological synapse (IS), whose assembly and effector function critically rely on dynamic cytoskeletal changes in NK cells. Here we explored the role of CLL cell actin cytoskeleton during NK cell attack. We found that CLL cells can undergo fast actin cytoskeleton remodeling which is characterized by a NK cell contact-induced accumulation of actin filaments at the IS. Such polarization of the actin cytoskeleton was strongly associated with resistance against NK cell-mediated cytotoxicity and reduced amounts of the cell-death inducing molecule granzyme B in target CLL cells. Selective pharmacological targeting of the key actin regulator Cdc42 abrogated the capacity of CLL cells to reorganize their actin cytoskeleton during NK cell attack, increased levels of transferred granzyme B and restored CLL cell susceptibility to NK cell cytotoxicity. This resistance mechanism was confirmed in primary CLL cells from patients. In addition, pharmacological inhibition of actin dynamics in combination with blocking antibodies increased conjugation frequency and improved CLL cell elimination by NK cells. Together our results highlight the critical role of CLL cell actin cytoskeleton in driving resistance against NK cell cytotoxicity and provide new potential therapeutic point of intervention to target CLL immune escape.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Citotoxicidad Inmunológica , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Leucemia Linfocítica Crónica de Células B/inmunología , Leucemia Linfocítica Crónica de Células B/metabolismo , Proteína de Unión al GTP cdc42/antagonistas & inhibidores , Citoesqueleto de Actina/efectos de los fármacos , Biomarcadores , Línea Celular Tumoral , Citotoxicidad Inmunológica/efectos de los fármacos , Técnica del Anticuerpo Fluorescente , Antígenos HLA-G/inmunología , Humanos , Sinapsis Inmunológicas/inmunología , Sinapsis Inmunológicas/metabolismo , Inmunofenotipificación , Células Asesinas Naturales/efectos de los fármacos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/patología , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA