Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Intervalo de año de publicación
1.
Transl Neurodegener ; 12(1): 56, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-38049923

RESUMEN

BACKGROUND: Cognitive decline in Alzheimer's disease (AD) is associated with hyperphosphorylated tau (pTau) propagation between neurons along synaptically connected networks, in part via extracellular vesicles (EVs). EV biogenesis is triggered by ceramide enrichment at the plasma membrane from neutral sphingomyelinase2 (nSMase2)-mediated cleavage of sphingomyelin. We report, for the first time, that human tau expression elevates brain ceramides and nSMase2 activity. METHODS: To determine the therapeutic benefit of inhibiting this elevation, we evaluated PDDC, the first potent, selective, orally bioavailable, and brain-penetrable nSMase2 inhibitor in the transgenic PS19 AD mouse model. Additionally, we directly evaluated the effect of PDDC on tau propagation in a mouse model where an adeno-associated virus (AAV) encoding P301L/S320F double mutant human tau was stereotaxically-injected unilaterally into the hippocampus. The contralateral transfer of the double mutant human tau to the dentate gyrus was monitored. We examined ceramide levels, histopathological changes, and pTau content within EVs isolated from the mouse plasma. RESULTS: Similar to human AD, the PS19 mice exhibited increased brain ceramide levels and nSMase2 activity; both were completely normalized by PDDC treatment. The PS19 mice also exhibited elevated tau immunostaining, thinning of hippocampal neuronal cell layers, increased mossy fiber synaptophysin immunostaining, and glial activation, all of which were pathologic features of human AD. PDDC treatment reduced these changes. The plasma of PDDC-treated PS19 mice had reduced levels of neuronal- and microglial-derived EVs, the former carrying lower pTau levels, compared to untreated mice. In the tau propagation model, PDDC normalized the tau-induced increase in brain ceramides and significantly reduced the amount of tau propagation to the contralateral side. CONCLUSIONS: PDDC is a first-in-class therapeutic candidate that normalizes elevated brain ceramides and nSMase2 activity, leading to the slowing of tau spread in AD mice.


Asunto(s)
Enfermedad de Alzheimer , Animales , Humanos , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Ceramidas/metabolismo , Ratones Transgénicos , Neuronas/metabolismo
2.
Res Sq ; 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37502930

RESUMEN

Background: Cognitive decline in Alzheimer's disease (AD) is associated with prion-like tau propagation between neurons along synaptically connected networks, in part via extracellular vesicles (EV). EV biogenesis is triggered by ceramide enrichment at the plasma membrane from neutral sphingomyelinase2(nSMase2)-mediated cleavage of sphingomyelin. We report, for the first time, that tau expression triggers an elevation in brain ceramides and nSMase2 activity. Methods: To determine the therapeutic benefit of inhibiting this elevation, we evaluated the efficacy of PDDC, the first potent, selective, orally bioavailable, and brain-penetrable nSMase2 inhibitor, in the PS19 tau transgenic AD murine model. Changes in brain ceramide and sphingomyelin levels, Tau content, histopathology, and nSMase2 target engagement were monitored, as well as changes in the number of brain-derived EVs in plasma and their Tau content. Additionally, we evaluated the ability of PDDC to impede tau propagation in a murine model where an adeno-associated virus(AAV) encoding for P301L/S320F double mutant human tau was stereotaxically-injected unilaterally into the hippocampus and the contralateral transfer to the dentate gyrus was monitored. Results: Similar to human AD, PS19 mice exhibited increased brain ceramides and nSMase2 activity; both were completely normalized by PDDC treatment. PS19 mice exhibited elevated tau immunostaining, thinning of hippocampal neuronal cell layers, increased mossy fiber synaptophysin immunostaining, and glial activation, all pathologic features of human AD. PDDC treatment significantly attenuated these aberrant changes. Mouse plasma isolated from PDDC-treated PS19 mice exhibited reduced levels of neuron- and microglia-derived EVs, the former carrying lower phosphorylated Tau(pTau) levels, compared to untreated mice. In the AAV tau propagation model, PDDC normalized the tau-induced increase in brain ceramides and significantly decreased tau spreading to the contralateral side. Conclusions: PDDC is a first-in-class therapeutic candidate that normalizes elevated brain ceramides and nSMase2 activity leading to the slowing of tau spread in AD mice.

3.
Sci Adv ; 8(46): eabq5925, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36383674

RESUMEN

6-Diazo-5-oxo-l-norleucine (DON) is a glutamine antagonist that suppresses cancer cell metabolism but concurrently enhances the metabolic fitness of tumor CD8+ T cells. DON showed promising efficacy in clinical trials; however, its development was halted by dose-limiting gastrointestinal (GI) toxicities. Given its clinical potential, we designed DON peptide prodrugs and found DRP-104 [isopropyl(S)-2-((S)-2-acetamido-3-(1H-indol-3-yl)-propanamido)-6-diazo-5-oxo-hexanoate] that was preferentially bioactivated to DON in tumor while bioinactivated to an inert metabolite in GI tissues. In drug distribution studies, DRP-104 delivered a prodigious 11-fold greater exposure of DON to tumor versus GI tissues. DRP-104 affected multiple metabolic pathways in tumor, including decreased glutamine flux into the TCA cycle. In efficacy studies, both DRP-104 and DON caused complete tumor regression; however, DRP-104 had a markedly improved tolerability profile. DRP-104's effect was CD8+ T cell dependent and resulted in robust immunologic memory. DRP-104 represents a first-in-class prodrug with differential metabolism in target versus toxicity tissue. DRP-104 is now in clinical trials under the FDA Fast Track designation.


Asunto(s)
Neoplasias , Profármacos , Humanos , Profármacos/farmacología , Profármacos/uso terapéutico , Diazooxonorleucina/farmacología , Diazooxonorleucina/uso terapéutico , Glutamina/metabolismo , Linfocitos T CD8-positivos/metabolismo , Neoplasias/tratamiento farmacológico , Inhibidores Enzimáticos/uso terapéutico
4.
J Med Chem ; 65(22): 15473-15486, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36327103

RESUMEN

This work describes the enhancement of a novel antitumor therapeutic platform that combines advantages from small-molecule drug conjugates (SMDCs) and antibody drug conjugates (ADCs). Valine-citrulline (VCit) dipeptide linkers are commonly used cathepsin B cleavable linkers for ADCs. However, the instability of these linkers in mouse serum makes translating efficacy data from mouse to human more challenging. Replacing the VCit linker with glutamic acid-valine-citrulline (EVCit) has been reported to enhance the stability of ADCs in mouse serum. However, the effect of EVCit linker on the stability of SMDCs has not been reported. Here, we report that incorporating the EVCit linker in prostate-specific membrane antigen-targeting SMDCs, equipped with the transthyretin ligand AG10, resulted in conjugates with lower toxicity, an extended half-life, and superior therapeutic efficacy to docetaxel in a xenograft mouse model of prostate cancer. This should make SMDCs' preclinical toxicity and efficacy data from mice more reliable for predicting human results.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Animales , Humanos , Ratones , Anticuerpos Monoclonales/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Línea Celular Tumoral , Citrulina/química , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Inmunoconjugados/química , Ligandos , Prealbúmina , Valina
5.
Pharmaceutics ; 14(10)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36297501

RESUMEN

Alzheimer's disease (AD) is characterized by the progressive accumulation of amyloid-ß and hyperphosphorylated tau (pTau), which can spread throughout the brain via extracellular vesicles (EVs). Membrane ceramide enrichment regulated by the enzyme neutral sphingomyelinase 2 (nSMase2) is a critical component of at least one EV biogenesis pathway. Our group recently identified 2,6-Dimethoxy-4-(5-Phenyl-4-Thiophen-2-yl-1H-Imidazol-2-yl)-Phenol (DPTIP), the most potent (30 nM) and selective inhibitor of nSMase2 reported to date. However, DPTIP exhibits poor oral pharmacokinetics (PK), modest brain penetration, and rapid clearance, limiting its clinical translation. To enhance its PK properties, we conjugated DPTIP to a hydroxyl-PAMAM dendrimer delivery system, creating dendrimer-DPTIP (D-DPTIP). In an acute brain injury model, orally administered D-DPTIP significantly reduced the intra-striatal IL-1ß-induced increase in plasma EVs up to 72 h post-dose, while oral DPTIP had a limited effect. In a mouse tau propagation model, where a mutant hTau (P301L/S320F) containing adeno-associated virus was unilaterally seeded into the hippocampus, oral D-DPTIP (dosed 3× weekly) significantly inhibited brain nSMase2 activity and blocked the spread of pTau to the contralateral hippocampus. These data demonstrate that dendrimer conjugation of DPTIP improves its PK properties, resulting in significant inhibition of EV propagation of pTau in mice. Dendrimer-based delivery of DPTIP has the potential to be an exciting new therapeutic for AD.

6.
Curr Drug Metab ; 22(9): 735-745, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34488583

RESUMEN

BACKGROUND: Metabolomic analyses from our group and others have shown that tumors treated with glutamine antagonists (GA) exhibit robust accumulation of formylglycinamide ribonucleotide (FGAR), an intermediate in the de novo purine synthesis pathway. The increase in FGAR is attributed to the inhibition of the enzyme FGAR amidotransferase (FGAR-AT) that catalyzes the ATP-dependent amidation of FGAR to formylglycinamidine ribonucleotide (FGAM). While perturbation of this pathway resulting from GA therapy has long been recognized, no study has reported systematic quantitation and analyses of FGAR in plasma and tumors. OBJECTIVE: Herein, we aimed to evaluate the efficacy of our recently discovered tumor-targeted GA prodrug, GA-607 (isopropyl 2-(6-acetamido-2-(adamantane-1-carboxamido)hexanamido)-6-diazo-5-oxohexanoate), and demonstrate its target engagement by quantification of FGAR in plasma and tumors. METHODS: Efficacy and pharmacokinetics of GA-607 were evaluated in a murine EL4 lymphoma model followed by global tumor metabolomic analysis. Liquid chromatography-mass spectrometry (LC-MS) based methods employing the ion-pair chromatography approach were developed and utilized for quantitative FGAR analyses in plasma and tumors. RESULTS: GA-607 showed preferential tumor distribution and robust single-agent efficacy in a murine EL4 lymphoma model. While several metabolic pathways were perturbed by GA-607 treatment, FGAR showed the highest increase qualitatively. Using our newly developed sensitive and selective LC-MS method, we showed a robust >80- and >10- fold increase in tumor and plasma FGAR levels, respectively, with GA-607 treatment. CONCLUSION: These studies describe the importance of FGAR quantification following GA therapy in cancer and underscore its importance as a valuable pharmacodynamic marker in the preclinical and clinical development of GA therapies.


Asunto(s)
Desarrollo de Medicamentos/métodos , Glutamina/antagonistas & inhibidores , Glicina/análogos & derivados , Neoplasias , Ribonucleótidos , Animales , Biomarcadores Farmacológicos/análisis , Biomarcadores Farmacológicos/metabolismo , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/metabolismo , Cromatografía Liquida/métodos , Glicina/análisis , Glicina/metabolismo , Espectrometría de Masas/métodos , Redes y Vías Metabólicas/efectos de los fármacos , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Ribonucleótidos/análisis , Ribonucleótidos/metabolismo
7.
Bioorg Med Chem Lett ; 50: 128321, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34400301

RESUMEN

Two distinct diazo precursors, imidazotetrazine and nitrous amide, were explored as promoieties in designing prodrugs of 6-diazo-5-oxo-l-norleucine (DON), a glutamine antagonist. As a model for an imidazotetrazine-based prodrug, we synthesized (S)-2-acetamido-6-(8-carbamoyl-4-oxoimidazo[5,1-d][1,2,3,5]tetrazin-3(4H)-yl)-5-oxohexanoic acid (4) containing the entire scaffold of temozolomide, a precursor of the DNA-methylating agent clinically approved for the treatment of glioblastoma multiforme. For a nitrous amide-based prodrug, we synthesized 2-acetamido-6-(((benzyloxy)carbonyl)(nitroso)amino)-5-oxohexanoic acid (5) containing a N-nitrosocarbamate group, which can be converted to a diazo moiety via a mechanism similar to that of streptozotocin, a clinically approved diazomethane-releasing drug containing an N-nitrosourea group. Preliminary characterization confirmed formation of N-acetyl DON (6), also known as duazomycin A, from compound 4 in a pH-dependent manner while compound 5 did not exhibit sufficient stability to allow further characterization. Taken together, our model studies suggest that further improvements are needed to translate this prodrug approach into glutamine antagonist-based therapy.


Asunto(s)
Diazooxonorleucina/análogos & derivados , Diazooxonorleucina/farmacología , Glutamina/antagonistas & inhibidores , Profármacos/química , Profármacos/farmacología , Diazooxonorleucina/química , Diseño de Fármacos , Estabilidad de Medicamentos , Estructura Molecular
8.
Drug Discov Today ; 26(7): 1656-1668, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33798648

RESUMEN

Extracellular vesicles (EVs) are indispensable mediators of intercellular communication, but they can also assume a nefarious role by ferrying pathological cargo that contributes to neurological, oncological, inflammatory, and infectious diseases. The canonical pathway for generating EVs involves the endosomal sorting complexes required for transport (ESCRT) machinery, but an alternative pathway is induced by the enrichment of lipid membrane ceramides generated by neutral sphingomyelinase 2 (nSMase2). Inhibition of nSMase2 has become an attractive therapeutic strategy for inhibiting EV biogenesis, and a growing number of small-molecule nSMase2 inhibitors have shown promising therapeutic activity in preclinical disease models. This review outlines the function of EVs, their potential role in disease, the discovery and efficacy of nSMase2 inhibitors, and the path to translate these findings into therapeutics.


Asunto(s)
Vesículas Extracelulares , Esfingomielina Fosfodiesterasa/antagonistas & inhibidores , Animales , Resistencia a Medicamentos , Humanos , Inmunoterapia , Neoplasias/tratamiento farmacológico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Esfingomielina Fosfodiesterasa/metabolismo
9.
Mol Pharm ; 16(7): 3237-3252, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31136717

RESUMEN

The hydrophobicity of many chemotherapeutic agents usually results in their nonselective passive distribution into healthy cells and organs causing collateral toxicity. Ligand-targeted drugs (LTDs) are a promising class of targeted anticancer agents. The hydrophilicity of the targeting ligands in LTDs limits its nonselective passive tissue distribution and toxicity to healthy cells. In addition, the small size of LTDs allows for better tumor penetration, especially in the case of solid tumors. However, the short circulation half-life of LTDs, due to their hydrophilicity and small size, remains a significant challenge for achieving their full therapeutic potential. Therefore, extending the circulation half-life of targeted chemotherapeutic agents while maintaining their hydrophilicity and small size will represent a significant advance toward effective and safe cancer treatment. Here, we present a new approach for enhancing the safety and efficacy of targeted chemotherapeutic agents. By endowing hydrophobic chemotherapeutic agents with a targeting moiety and a hydrophilic small molecule that binds reversibly to the serum protein transthyretin, we generated small hydrophilic drug conjugates that displayed enhanced circulation half-life in rodents and selectivity to cancer cells. To the best of our knowledge, this is the first demonstration of a successful approach that maintains the small size and hydrophilicity of targeted anticancer agents containing hydrophobic payloads while at the same time extending their circulation half-life. This was demonstrated by the superior in vivo efficacy and lower toxicity of our conjugates in xenograft mouse models of metastatic prostate cancer.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Prealbúmina/química , Prealbúmina/farmacocinética , Neoplasias de la Próstata/tratamiento farmacológico , Animales , Antineoplásicos/efectos adversos , Antineoplásicos/farmacocinética , Supervivencia Celular/efectos de los fármacos , Simulación por Computador , Semivida , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Masculino , Ratones , Imagen Óptica , Neoplasias de la Próstata/patología , Ratas , Ratas Wistar , Distribución Tisular , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
10.
J Med Chem ; 61(17): 7862-7876, 2018 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-30133284

RESUMEN

Transthyretin (TTR) amyloid cardiomyopathy (ATTR-CM) is a fatal disease with no available disease-modifying therapies. While pathogenic TTR mutations (TTRm) destabilize TTR tetramers, the T119M variant stabilizes TTRm and prevents disease. A comparison of potency for leading TTR stabilizers in clinic and structural features important for effective TTR stabilization is lacking. Here, we found that molecular interactions reflected in better binding enthalpy may be critical for development of TTR stabilizers with improved potency and selectivity. Our studies provide mechanistic insights into the unique binding mode of the TTR stabilizer, AG10, which could be attributed to mimicking the stabilizing T119M variant. Because of the lack of animal models for ATTR-CM, we developed an in vivo system in dogs which proved appropriate for assessing the pharmacokinetics-pharmacodynamics profile of TTR stabilizers. In addition to stabilizing TTR, we hypothesize that optimizing the binding enthalpy could have implications for designing therapeutic agents for other amyloid diseases.


Asunto(s)
Neuropatías Amiloides Familiares/prevención & control , Benzoatos/química , Benzoatos/farmacología , Mutación , Prealbúmina/química , Prealbúmina/genética , Pirazoles/química , Pirazoles/farmacología , Administración Oral , Neuropatías Amiloides Familiares/genética , Neuropatías Amiloides Familiares/patología , Animales , Benzoatos/administración & dosificación , Biomimética , Perros , Entropía , Femenino , Humanos , Masculino , Modelos Moleculares , Prealbúmina/metabolismo , Conformación Proteica , Estabilidad Proteica , Pirazoles/administración & dosificación , Albúmina Sérica Humana/metabolismo , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA