Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nat Commun ; 10(1): 137, 2019 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-30635584

RESUMEN

Dysregulation of RNA splicing by spliceosome mutations or in cancer genes is increasingly recognized as a hallmark of cancer. Small molecule splicing modulators have been introduced into clinical trials to treat solid tumors or leukemia bearing recurrent spliceosome mutations. Nevertheless, further investigation of the molecular mechanisms that may enlighten therapeutic strategies for splicing modulators is highly desired. Here, using unbiased functional approaches, we report that the sensitivity to splicing modulation of the anti-apoptotic BCL2 family genes is a key mechanism underlying preferential cytotoxicity induced by the SF3b-targeting splicing modulator E7107. While BCL2A1, BCL2L2 and MCL1 are prone to splicing perturbation, BCL2L1 exhibits resistance to E7107-induced splicing modulation. Consequently, E7107 selectively induces apoptosis in BCL2A1-dependent melanoma cells and MCL1-dependent NSCLC cells. Furthermore, combination of BCLxL (BCL2L1-encoded) inhibitors and E7107 remarkably enhances cytotoxicity in cancer cells. These findings inform mechanism-based approaches to the future clinical development of splicing modulators in cancer treatment.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Melanoma/tratamiento farmacológico , Antígenos de Histocompatibilidad Menor/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Empalme del ARN/efectos de los fármacos , Proteína bcl-X/genética , Células A549 , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Doxiciclina/farmacología , Sinergismo Farmacológico , Compuestos Epoxi/farmacología , Femenino , Humanos , Neoplasias Pulmonares/genética , Macrólidos/farmacología , Melanoma/genética , Ratones , Ratones Desnudos , Interferencia de ARN , Empalme del ARN/genética , ARN Interferente Pequeño/genética , Empalmosomas/efectos de los fármacos , Empalmosomas/genética , Secuenciación del Exoma , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Cancer Cell ; 34(2): 225-241.e8, 2018 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-30107174

RESUMEN

Mutations affecting RNA splicing factors are the most common genetic alterations in myelodysplastic syndrome (MDS) patients and occur in a mutually exclusive manner. The basis for the mutual exclusivity of these mutations and how they contribute to MDS is not well understood. Here we report that although different spliceosome gene mutations impart distinct effects on splicing, they are negatively selected for when co-expressed due to aberrant splicing and downregulation of regulators of hematopoietic stem cell survival and quiescence. In addition to this synthetic lethal interaction, mutations in the splicing factors SF3B1 and SRSF2 share convergent effects on aberrant splicing of mRNAs that promote nuclear factor κB signaling. These data identify shared consequences of splicing-factor mutations and the basis for their mutual exclusivity.


Asunto(s)
Mutación , Neoplasias/genética , Empalmosomas , Animales , Caspasa 8/genética , Femenino , Hematopoyesis , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/fisiología , Fosfoproteínas/genética , Factores de Empalme de ARN/genética , Factores de Empalme Serina-Arginina/genética
3.
Cell Rep ; 23(1): 282-296.e4, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29617667

RESUMEN

Hotspot mutations in splicing factor genes have been recently reported at high frequency in hematological malignancies, suggesting the importance of RNA splicing in cancer. We analyzed whole-exome sequencing data across 33 tumor types in The Cancer Genome Atlas (TCGA), and we identified 119 splicing factor genes with significant non-silent mutation patterns, including mutation over-representation, recurrent loss of function (tumor suppressor-like), or hotspot mutation profile (oncogene-like). Furthermore, RNA sequencing analysis revealed altered splicing events associated with selected splicing factor mutations. In addition, we were able to identify common gene pathway profiles associated with the presence of these mutations. Our analysis suggests that somatic alteration of genes involved in the RNA-splicing process is common in cancer and may represent an underappreciated hallmark of tumorigenesis.


Asunto(s)
Tasa de Mutación , Neoplasias/genética , Factores de Empalme de ARN/genética , Línea Celular Tumoral , Genes Supresores de Tumor , Humanos , Mutación con Pérdida de Función , Neoplasias/clasificación , Oncogenes , Empalme del ARN/genética
4.
Nat Commun ; 8: 15522, 2017 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-28541300

RESUMEN

Pladienolide, herboxidiene and spliceostatin have been identified as splicing modulators that target SF3B1 in the SF3b subcomplex. Here we report that PHF5A, another component of this subcomplex, is also targeted by these compounds. Mutations in PHF5A-Y36, SF3B1-K1071, SF3B1-R1074 and SF3B1-V1078 confer resistance to these modulators, suggesting a common interaction site. RNA-seq analysis reveals that PHF5A-Y36C has minimal effect on basal splicing but inhibits the global action of splicing modulators. Moreover, PHF5A-Y36C alters splicing modulator-induced intron-retention/exon-skipping profile, which correlates with the differential GC content between adjacent introns and exons. We determine the crystal structure of human PHF5A demonstrating that Y36 is located on a highly conserved surface. Analysis of the cryo-EM spliceosome Bact complex shows that the resistance mutations cluster in a pocket surrounding the branch point adenosine, suggesting a competitive mode of action. Collectively, we propose that PHF5A-SF3B1 forms a central node for binding to these splicing modulators.


Asunto(s)
Adenosina/química , Empalme Alternativo , Proteínas Portadoras/química , Fosfoproteínas/química , Factores de Empalme de ARN/química , Proliferación Celular , Supervivencia Celular , Microscopía por Crioelectrón , Cristalografía por Rayos X , Compuestos Epoxi/química , Exones , Alcoholes Grasos/química , Células HCT116 , Humanos , Intrones , Macrólidos/química , Espectrometría de Masas , Mutagénesis Sitio-Dirigida , Mutación , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/química , Fosfoproteínas/metabolismo , Unión Proteica , Conformación Proteica , Piranos/química , Interferencia de ARN , Factores de Empalme de ARN/metabolismo , Proteínas de Unión al ARN , Proteínas Recombinantes/química , Análisis de Secuencia de ARN , Compuestos de Espiro/química , Empalmosomas/metabolismo , Transactivadores
6.
Nat Med ; 22(6): 672-8, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27135740

RESUMEN

Mutations in genes encoding splicing factors (which we refer to as spliceosomal genes) are commonly found in patients with myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). These mutations recurrently affect specific amino acid residues, leading to perturbed normal splice site and exon recognition. Spliceosomal gene mutations are always heterozygous and rarely occur together with one another, suggesting that cells may tolerate only a partial deviation from normal splicing activity. To test this hypothesis, we engineered mice to express a mutated allele of serine/arginine-rich splicing factor 2 (Srsf2(P95H))-which commonly occurs in individuals with MDS and AML-in an inducible, hemizygous manner in hematopoietic cells. These mice rapidly succumbed to fatal bone marrow failure, demonstrating that Srsf2-mutated cells depend on the wild-type Srsf2 allele for survival. In the context of leukemia, treatment with the spliceosome inhibitor E7107 (refs. 7,8) resulted in substantial reductions in leukemic burden, specifically in isogenic mouse leukemias and patient-derived xenograft AMLs carrying spliceosomal mutations. Whereas E7107 treatment of mice resulted in widespread intron retention and cassette exon skipping in leukemic cells regardless of Srsf2 genotype, the magnitude of splicing inhibition following E7107 treatment was greater in Srsf2-mutated than in Srsf2-wild-type leukemia, consistent with the differential effect of E7107 on survival. Collectively, these data provide genetic and pharmacologic evidence that leukemias with spliceosomal gene mutations are preferentially susceptible to additional splicing perturbations in vivo as compared to leukemias without such mutations. Modulation of spliceosome function may thus provide a new therapeutic avenue in genetically defined subsets of individuals with MDS or AML.


Asunto(s)
Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicos/genética , Factores de Empalme Serina-Arginina/genética , Empalmosomas/genética , Anemia Aplásica/genética , Animales , Enfermedades de la Médula Ósea/genética , Trastornos de Fallo de la Médula Ósea , Trasplante de Médula Ósea , Catálisis , Línea Celular Tumoral , Compuestos Epoxi/farmacología , Citometría de Flujo , Técnicas de Sustitución del Gen , Hemicigoto , Hemoglobinuria Paroxística/genética , Humanos , Macrólidos/farmacología , Ratones , Ratones Noqueados , Mutación , Trasplante de Neoplasias , Empalme del ARN/efectos de los fármacos , Empalme del ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
7.
Nat Neurosci ; 16(5): 562-70, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23525043

RESUMEN

Huntington's disease is caused by expanded CAG repeats in HTT, conferring toxic gain of function on mutant HTT (mHTT) protein. Reducing mHTT amounts is postulated as a strategy for therapeutic intervention. We conducted genome-wide RNA interference screens for genes modifying mHTT abundance and identified 13 hits. We tested 10 in vivo in a Drosophila melanogaster Huntington's disease model, and 6 exhibited activity consistent with the in vitro screening results. Among these, negative regulator of ubiquitin-like protein 1 (NUB1) overexpression lowered mHTT in neuronal models and rescued mHTT-induced death. NUB1 reduces mHTT amounts by enhancing polyubiquitination and proteasomal degradation of mHTT protein. The process requires CUL3 and the ubiquitin-like protein NEDD8 necessary for CUL3 activation. As a potential approach to modulating NUB1 for treatment, interferon-ß lowered mHTT and rescued neuronal toxicity through induction of NUB1. Thus, we have identified genes modifying endogenous mHTT using high-throughput screening and demonstrate NUB1 as an exemplar entry point for therapeutic intervention of Huntington's disease.


Asunto(s)
Mutación/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Adenosina Trifosfato/metabolismo , Animales , Línea Celular , Células Cultivadas , Proteínas Cullin/metabolismo , Modelos Animales de Enfermedad , Drosophila/efectos de los fármacos , Drosophila/metabolismo , Embrión de Mamíferos , Femenino , Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Proteína Huntingtina , Enfermedad de Huntington/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína NEDD8 , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/toxicidad , Neuronas/efectos de los fármacos , Embarazo , Factores de Transcripción/genética , Ubiquitinas/metabolismo
8.
Mol Neurodegener ; 5: 58, 2010 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-21156064

RESUMEN

BACKGROUND: The mutation in Huntington's disease is a polyglutamine expansion near the N-terminus of huntingtin. Huntingtin expressed in immortalized neurons is cleaved near the N-terminus to form N-terminal polypeptides known as cleavage products A and B (cpA and cpB). CpA and cpB with polyglutamine expansion form inclusions in the nucleus and cytoplasm, respectively. The formation of cpA and cpB in primary neurons has not been established and the proteases involved in the formation of these fragments are unknown. RESULTS: Delivery of htt cDNA into the mouse striatum using adeno-associated virus or into primary cortical neurons using lentivirus generated cpA and cpB, indicating that neurons in brain and in vitro can form these fragments. A screen of small molecule protease inhibitors introduced to clonal striatal X57 cells and HeLa cells identified compounds that reduced levels of cpA and are inhibitors of the aspartyl proteases cathepsin D and cathepsin E. The most effective compound, P1-N031, is a transition state mimetic for aspartyl proteases. By western blot analysis, cathepsin D was easily detected in clonal striatal X57 cells, mouse brain and primary neurons, whereas cathepsin E was only detectible in clonal striatal X57 cells. In primary neurons, levels of cleavage product A were not changed by the same compounds that were effective in clonal striatal cells or by mRNA silencing to partially reduce levels of cathepsin D. Instead, treating primary neurons with compounds that are known to inhibit gamma secretase activity either indirectly (Imatinib mesylate, Gleevec) or selectively (LY-411,575 or DAPT) reduced levels of cpA. LY-411,575 or DAPT also increased survival of primary neurons expressing endogenous full-length mutant huntingtin. CONCLUSION: We show that cpA and cpB are produced from a larger huntingtin fragment in vivo in mouse brain and in primary neuron cultures. The aspartyl protease involved in forming cpA has cathepsin-D like properties in immortalized neurons and gamma secretase-like properties in primary neurons, suggesting that cell type may be a critical factor that specifies the aspartyl protease responsible for cpA. Since gamma secretase inhibitors were also protective in primary neurons, further study of the role of gamma-secretase activity in HD neurons is justified.

9.
J Neurochem ; 97(6): 1585-99, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16805770

RESUMEN

While transplanted neural stem cells (NSCs) have been shown to hold promise for cell replacement in models of a number of neurological disorders, these examples have typically been under conditions where the host cells become dysfunctional due to a cell autonomous etiology, i.e. a 'sick' cell within a relatively supportive environment. It has long been held that cell replacement in a toxic milieu would not likely be possible; donor cells would succumb in much the same way as endogenous cells had. Many metabolic diseases are characterized by this situation, suggesting that they would be poor targets for cell replacement therapies. On the other hand, models of such diseases could prove ideal for testing the capacity for cell replacement under such challenging conditions. In the twitcher (twi ) mouse -- as in patients with Krabbe or globoid cell leukodystrophy (GLD), for which it serves as an authentic model -- loss of galactocerebrosidase (GalC) activity results in the accumulation of psychosine, a toxic glycolipid. Twi mice, like children with GLD, exhibit inexorable neurological deterioration presumably as a result of dysfunctional and ultimately degenerated oligodendrocytes with loss of myelin. It is believed that GLD pathophysiology is related to a psychosine-filled environment that kills not only host oligodendrocytes but theoretically any new cells placed into that milieu. Through the implantation of NSCs into the brains of both neonatal and juvenile/young adult twi mice, we have determined that widespread oligodendrocyte replacement and remyelination is feasible. NSCs appear to be intrinsically resistant to psychosine -- more so in their undifferentiated state than when directed ex vivo to become oligodendrocytes. This resistance can be enhanced by engineering the NSCs to over-express GalC. Some twi mice grafted with such engineered NSCs had thicker white tracts and lived 2-3 times longer than expected. While their brains had detectable levels of GalC, it was probably more significant that their psychosine levels were lower than in twi mice that died at a younger age. This concept of resistance based on differentiation state extended to human NSCs which could similarly survive within the twi brain. Taken together, these results suggest a number of points regarding cellular therapies against degenerative diseases with a prominent cell non-autonomous component: Cell replacement is possible if cells resistant to the toxic environment are employed. Furthermore, an important aspect of successful treatment will likely be not only cell replacement but also cross-correction of host cells to provide them with enzyme activity and hence resistance. While oligodendrocyte replacement alone was not a sufficient treatment for GLD (even when extensive), the replacement of both cells and molecules -- e.g. with NSCs that could both become oligodendrocytes and 'pumps' for GalC -- emerges as a promising basis for a multidisciplinary strategy. Most neurological disease are complex in this way and will likely require multifaceted approaches, perhaps with NSCs serving as the 'glue'.


Asunto(s)
Galactosilceramidasa/biosíntesis , Leucodistrofia de Células Globoides/cirugía , Neuronas/fisiología , Trasplante de Células Madre/métodos , Células Madre/fisiología , Animales , Animales Recién Nacidos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Galactosilceramidasa/deficiencia , Terapia Genética/métodos , Humanos , Inmunohistoquímica , Leucodistrofia de Células Globoides/patología , Ratones , Ratones Mutantes , Microscopía Electrónica de Transmisión/métodos , Proteína Básica de Mielina/metabolismo , Vaina de Mielina/patología , Vaina de Mielina/ultraestructura , Neuronas/efectos de los fármacos , Oligodendroglía/efectos de los fármacos , Oligodendroglía/fisiología , Psicosina/toxicidad , Células Madre/efectos de los fármacos , Transducción Genética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA