Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Sci Rep ; 13(1): 8895, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264073

RESUMEN

Metallothioneins (MTs) constitute an important family of metal binding proteins. Mollusk MTs, in particular, have been used as model systems to better understand the evolution of their metal binding features and functional adaptation. In the present study two recombinantly produced MTs, LgiMT1 and LgiMT2, and their de novo evolved γ domain, of the marine limpet Lottia gigantea, were analyzed by electronic spectroscopy and mass spectrometry. Both MT proteins, as well as their γ domains, exhibit a strong binding specificity for Cd(II), but not for Zn(II) or Cu(I). The LgiMTs' γ domain renders an MII4(SCys)10 cluster with an increased Cd stoichiometry (binding 4 instead of 3 Cd2+ ions), representing a novel structural element in the world of MTs, probably featuring an adamantane 3D structure. This cluster significantly improves the Cd(II)-binding performance of the full length proteins and thus contributes to the particularly high Cd coping capacity observed in free-living limpets.


Asunto(s)
Cadmio , Gastrópodos , Animales , Cadmio/metabolismo , Zinc/metabolismo , Unión Proteica , Metales/metabolismo , Gastrópodos/metabolismo , Metalotioneína/genética , Metalotioneína/metabolismo
2.
Inorg Chem ; 62(18): 6893-6908, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37092705

RESUMEN

The mycobacterial histidine-rich GroEL1 protein differs significantly compared to the well-known methionine/glycine-rich GroEL chaperonin. It was predicted that mycobacterial GroEL1 can play a significant role in the metal homeostasis of Mycobacteria but not, as its analogue, in protein folding. In this paper, we present the properties of the GroEL1 His-rich C-terminus as a ligand for Cu(II) ions. We studied the stoichiometry, stability, and spectroscopic features of copper complexes of the eight model peptides: L1─Ac-DHDHHHGHAH, L2─Ac-DKPAKAEDHDHHHGHAH, and six mutants of L2 in the pH range of 2-11. We revealed the impact of adjacent residues to the His-rich fragment on the complex stability: the presence of Lys and Asp residues significantly increases the stability of the system. The impact of His mutations was also examined: surprisingly, the exchange of each single His to the Gln residue did not disrupt the ability of the ligand to provide three binding sites for Cu(II) ions. Despite the most possible preference of the Cu(II) ion for the His9-His13 residues (Ac-DKPAKAEDHDHHH-) of the model peptide, especially the His11 residue, the study shows that there is not only one possible binding mode for Cu(II). The significance of this phenomenon is very important for the GroEL1 function─if the single mutation occurs naturally, the protein would be still able to interact with the metal ion.


Asunto(s)
Cobre , Histidina , Histidina/química , Cobre/química , Mutación Puntual , Ligandos , Péptidos/química , Iones
3.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36768568

RESUMEN

The design of artificial helicoidal molecules derived from metal ions with biological properties is one of the objectives within metallosupramolecular chemistry. Herein, we report three zinc helicates derived from a family of bisthiosemicarbazone ligands with different terminal groups, Zn2(LMe)2∙2H2O 1, Zn2(LPh)2∙2H2O 2 and Zn2(LPhNO2)23, obtained by an electrochemical methodology. These helicates have been fully characterized by different techniques, including X-ray diffraction. Biological studies of the zinc(II) helicates such as toxicity assays with erythrocytes and interaction studies with proteins and oligonucleotides were performed, demonstrating in all cases low toxicity and an absence of covalent interaction with the proteins and oligonucleotides. The in vitro cytotoxicity of the helicates was tested against MCF-7 (human breast carcinoma), A2780 (human ovarian carcinoma cells), NCI-H460 (human lung carcinoma cells) and MRC-5 (normal human lung fibroblasts), comparing the IC50 values with cisplatin. We will try to demonstrate if the terminal substituent of the ligand precursor exerts any effect in toxicity or in the antitumor activity of the zinc helicates.


Asunto(s)
Neoplasias Ováricas , Humanos , Femenino , Línea Celular Tumoral , Metales , Zinc/farmacología , Zinc/química , Oligonucleótidos , Ligandos
4.
Front Pharmacol ; 13: 1060827, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36467097

RESUMEN

Metal-based chemotherapeutics like cisplatin are widely employed in cancer treatment. In the last years, the design of redox-active (transition) metal complexes, such as of copper (Cu), has attracted high interest as alternatives to overcome platinum-induced side-effects. However, several challenges are still faced, including optimal aqueous solubility and efficient intracellular delivery, and strategies like the use of cell-penetrating peptides have been encouraging. In this context, we previously designed a Cu(II) scaffold that exhibited significant reactive oxygen species (ROS)-mediated cytotoxicity. Herein, we build upon the promising Cu(II) redox-active metallic core and aim to potentiate its anticancer activity by rationally tailoring it with solubility- and uptake-enhancing functionalizations that do not alter the ROS-generating Cu(II) center. To this end, sulfonate, arginine and arginine-rich cell-penetrating peptide (CPP) derivatives have been prepared and characterized, and all the resulting complexes preserved the parent Cu(II) coordination core, thereby maintaining its reported redox capabilities. Comparative in vitro assays in several cancer cell lines reveal that while specific solubility-targeting derivatizations (i.e., sulfonate or arginine) did not translate into an improved cytotoxicity, increased intracellular copper delivery via CPP-conjugation promoted an enhanced anticancer activity, already detectable at short treatment times. Additionally, immunofluorescence assays show that the Cu(II) peptide-conjugate distributed throughout the cytosol without lysosomal colocalization, suggesting potential avoidance of endosomal entrapment. Overall, the systematic exploration of the tailored modifications enables us to provide further understanding on structure-activity relationships of redox-active metal-based (Cu(II)) cytotoxic complexes, which contributes to rationalize and improve the design of more efficient redox-mediated metal-based anticancer therapy.

5.
Inorg Chem ; 61(20): 7729-7745, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35522899

RESUMEN

The synthesis, full characterization, photochemical properties, and cytotoxic activity toward cisplatin-resistant cancer cell lines of new semisquaraine-type Pt(II) complexes are presented. The synthesis of eight semisquaraine-type ligands has been carried out by means of an innovative, straightforward methodology. A thorough structural NMR and X-ray diffraction analysis of the new ligands and complexes has been done. Density functional theory calculations have allowed to assign the trans configuration of the platinum center. Through the structural modification of the ligands, it has been possible to synthesize some complexes, which have turned out to be photoactive at wavelengths that allow their activation in cell cultures and, importantly, two of them show remarkable solubility in biological media. Photodegradation processes have been studied in depth, including the structural identification of photoproducts, thus justifying the changes observed after irradiation. From biological assessment, complexes C7 and C8 have been demonstrated to behave as promising photoactivatable compounds in the assayed cancer cell lines. Upon photoactivation, both complexes are capable of inducing a higher cytotoxic effect on the tested cells compared with nonphotoactivated compounds. Among the observed results, it is remarkable to note that C7 showed a PI > 50 in HeLa cells, and C8 showed a PI > 40 in A2780 cells, being also effective over cisplatin-resistant A2780cis cells (PI = 7 and PI = 4, respectively). The mechanism of action of these complexes has been studied, revealing that these photoactivated platinum complexes would actually present a combined mode of action, a therapeutically potential advantage.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Antineoplásicos/química , Línea Celular Tumoral , Cisplatino/farmacología , Femenino , Células HeLa , Humanos , Ligandos , Platino (Metal)/química , Platino (Metal)/farmacología
6.
Int J Mol Sci ; 22(23)2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34884919

RESUMEN

Metallothioneins' (MTs) biological function has been a matter of debate since their discovery. The importance to categorize these cysteine-rich proteins with high coordinating capacity into a specific group led to numerous classification proposals. We proposed a classification based on their metal-binding abilities, gradually sorting them from those with high selectivity towards Zn/Cd to those that are Cu-specific. However, the study of the NpeMT1 and NpeMT2isoforms of Nerita peloronta, has put a new perspective on this classification. N. peloronta has been chosen as a representative mollusk to elucidate the metal-binding abilities of Neritimorpha MTs, an order without any MTs characterized recently. Both isoforms have been recombinantly synthesized in cultures supplemented with ZnII, CdII, or CuII, and the purified metal-MT complexes have been thoroughly characterized by spectroscopic and spectrometric methods, leading to results that confirmed that Neritimorpha share Cd-selective MTs with Caenogastropoda and Heterobranchia, solving a so far unresolved question. NpeMTs show high coordinating preferences towards divalent metal ions, although one of them (NpeMT1) shares features with the so-called genuine Zn-thioneins, while the other (NpeMT2) exhibits a higher preference for Cd. The dissimilarities between the two isoforms let a window open to a new proposal of chemical MT classification.


Asunto(s)
Cadmio/metabolismo , Gastrópodos/metabolismo , Metalotioneína/química , Metalotioneína/clasificación , Zinc/metabolismo , Animales , Dicroismo Circular , Cobre/metabolismo , Escherichia coli/genética , Gastrópodos/química , Metalotioneína/genética , Metalotioneína/metabolismo , Dominios Proteicos , Isoformas de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrofotometría Ultravioleta
7.
Artículo en Español | LILACS, CUMED | ID: biblio-1408652

RESUMEN

Introducción: El informe mundial sobre envejecimiento y salud tiene en cuenta la sociedad e incluye los cuidados integrales para un envejecimiento saludable, por lo que elevar la calidad de la atención al adulto mayor a través del modelo de gestión docente-asistencial contribuirá a elevar la calidad de vida en estas edades. Objetivo: Diseñar una estrategia de superación profesoral sobre atención integral al adulto mayor dirigida a tutores de la residencia de Medicina General Integral. Método: Investigación aplicada, que tuvo una fase descriptiva-evaluativa y una de evaluación de resultados. La población estudiada fue el universo de tutores de la residencia de Medicina General Integral (12). Se estudiaron diferentes variables y se utilizaron encuestas y guías de desempeño, se aplicó frecuencia absoluta, relativa porcentual y la prueba de Mc Nemar. Resultados: Predominaron las edades de 45-54 años (58,3 por ciento). De los tutores, 41,7 por ciento eran asistentes y el 91,7 por ciento master o poseían categoría de investigador, se incrementaron los buenos conocimientos al 100 por ciento después de la intervención y el desempeño muy satisfactorio al 91,7 por ciento. Conclusiones: La estrategia de superación contribuyó al incremento del nivel de conocimientos y del desempeño sobre atención integral al adulto mayor en los tutores, así como una mayor participación en las actividades de ciencia y técnica relacionadas con la temática(AU)


Introduction: The World Report on Aging and Health takes society into account and includes comprehensive care for healthy aging; therefore, raising the quality of care for the elderly through the teaching-care management model will contribute to raising the quality of life in these ages. Objective: To design a teaching improvement strategy about comprehensive care for the elderly aimed at tutors from the Family Medicine residency. Method: Applied research with a descriptive-evaluative phase and a results assessment phase. The population studied was the universe of tutors from the Family Medicine residency (12). Different variables were studied and surveys and performance guides were used. Absolute frequency, relative percentage and the McNemar test were applied. Results: The ages 45-54 years (58.3 percent) predominated. Of the tutors, 41.7 percent were assistants, while 91.7percent were masters or had the researcher category. Good knowledge increased to 100 percent after the intervention, while very satisfactory performance did so to 91.7 percent. Conclusions: The improvement strategy contributed to the increase in the level of knowledge and performance on comprehensive care for the elderly in the tutors, as well as a greater participation in science and technical activities related to the subject(AU)


Asunto(s)
Humanos , Masculino , Femenino , Anciano , Dinámica Poblacional , Formación del Profesorado , Epidemiología Descriptiva
8.
Front Cell Dev Biol ; 9: 702688, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34277643

RESUMEN

Chordate Oikopleura dioica probably is the fastest evolving metazoan reported so far, and thereby, a suitable system in which to explore the limits of evolutionary processes. For this reason, and in order to gain new insights on the evolution of protein modularity, we have investigated the organization, function and evolution of multi-modular metallothionein (MT) proteins in O. dioica. MTs are a heterogeneous group of modular proteins defined by their cysteine (C)-rich domains, which confer the capacity of coordinating different transition metal ions. O. dioica has two MTs, a bi-modular OdiMT1 consisting of two domains (t-12C and 12C), and a multi-modular OdiMT2 with six t-12C/12C repeats. By means of mass spectrometry and spectroscopy of metal-protein complexes, we have shown that the 12C domain is able to autonomously bind four divalent metal ions, although the t-12C/12C pair -as it is found in OdiMT1- is the optimized unit for divalent metal binding. We have also shown a direct relationship between the number of the t-12C/12C repeats and the metal-binding capacity of the MTs, which means a stepwise mode of functional and structural evolution for OdiMT2. Finally, after analyzing four different O. dioica populations worldwide distributed, we have detected several OdiMT2 variants with changes in their number of t-12C/12C domain repeats. This finding reveals that the number of repeats fluctuates between current O. dioica populations, which provides a new perspective on the evolution of domain repeat proteins.

9.
Mol Biol Evol ; 38(10): 4435-4448, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34146103

RESUMEN

To investigate novel patterns and processes of protein evolution, we have focused in the metallothioneins (MTs), a singular group of metal-binding, cysteine-rich proteins that, due to their high degree of sequence diversity, still represents a "black hole" in Evolutionary Biology. We have identified and analyzed more than 160 new MTs in nonvertebrate chordates (especially in 37 species of ascidians, 4 thaliaceans, and 3 appendicularians) showing that prototypic tunicate MTs are mono-modular proteins with a pervasive preference for cadmium ions, whereas vertebrate and cephalochordate MTs are bimodular proteins with diverse metal preferences. These structural and functional differences imply a complex evolutionary history of chordate MTs-including de novo emergence of genes and domains, processes of convergent evolution, events of gene gains and losses, and recurrent amplifications of functional domains-that would stand for an unprecedented case in the field of protein evolution.


Asunto(s)
Cordados , Urocordados , Animales , Cordados/genética , Metalotioneína/genética , Urocordados/genética , Urocordados/metabolismo
10.
J Biol Inorg Chem ; 26(4): 435-453, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33934217

RESUMEN

The synthesis and characterization of four platinum(II) complexes using azobenzenes conveniently functionalized as ligands has been carried out. The characteristic photochemical behavior of the complexes due to the presence of azobenzene-type ligands and the role of the ligands in the activation of the complexes has been studied. Their promising cytotoxicity observed in HeLa cells prompted us to study the mechanism of action of these complexes as cytostatic agents. The interaction of the compounds with DNA, studied by circular dichroism, revealed a differential activity of the Pt(II) complexes upon irradiation. The intercalation abilities of the complexes as well as their reactivity with common proteins present in the blood stream allows to confirm some of the compounds obtained as good anticancer candidates.


Asunto(s)
Compuestos Azo/farmacología , Compuestos de Platino/farmacología , Antineoplásicos , Compuestos Azo/química , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Humanos , Espectrometría de Masas , Compuestos de Platino/síntesis química , Compuestos de Platino/química
11.
Inorg Chem ; 60(5): 2939-2952, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33596377

RESUMEN

Three novel dinuclear Cu(II) complexes based on a N,N,O-chelating salphen-like ligand scaffold and bearing varying aromatic substituents (-H, -Cl, and -Br) have been synthesized and characterized. The experimental and computational data obtained suggest that all three complexes exist in the dimeric form in the solid state and adopt the same conformation. The mass spectrometry and electron paramagnetic resonance results indicate that the dimeric structure coexists with the monomeric form in solution upon solvent (dimethyl sulfoxide and water) coordination. The three synthesized Cu(II) complexes exhibit high potentiality as ROS generators, with the Cu(II)/Cu(I) redox potential inside the biological redox window, and thus being able to biologically undergo Cu(II)/Cu(I) redox cycling. The formation of ROS is one of the most promising reported cell death mechanisms for metal complexes to offer an inherent selectivity to cancer cells. In vitro cytotoxic studies in two different cancer cell lines (HeLa and MCF7) and in a normal fibroblast cell line show promising selective cytotoxicity for cancer cells (IC50 about 25 µM in HeLa cells, which is in the range of cisplatin and improved with respect to carboplatin), hence placing this N,N,O-chelating salphen-like metallic core as a promising scaffold to be explored in the design of future tailor-made Cu(II) cytotoxic compounds.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Bases de Schiff/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quelantes/síntesis química , Quelantes/farmacología , Quelantes/toxicidad , Complejos de Coordinación/síntesis química , Complejos de Coordinación/toxicidad , Cobre/química , ADN/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Teoría Funcional de la Densidad , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ligandos , Ratones , Modelos Químicos , Células 3T3 NIH , Especies Reactivas de Oxígeno/metabolismo , Bases de Schiff/síntesis química , Bases de Schiff/toxicidad
12.
Mol Biol Evol ; 38(2): 424-436, 2021 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-32915992

RESUMEN

Metallothioneins (MTs) are proteins devoted to the control of metal homeostasis and detoxification, and therefore, MTs have been crucial for the adaptation of the living beings to variable situations of metal bioavailability. The evolution of MTs is, however, not yet fully understood, and to provide new insights into it, we have investigated the MTs in the diverse classes of Mollusks. We have shown that most molluskan MTs are bimodular proteins that combine six domains-α, ß1, ß2, ß3, γ, and δ-in a lineage-specific manner. We have functionally characterized the Neritimorpha ß3ß1 and the Patellogastropoda γß1 MTs, demonstrating the metal-binding capacity of the new γ domain. Our results have revealed a modular organization of mollusk MT, whose evolution has been impacted by duplication, loss, and de novo emergence of domains. MTs represent a paradigmatic example of modular evolution probably driven by the structural and functional requirements of metal binding.


Asunto(s)
Evolución Molecular , Gastrópodos/genética , Metalotioneína/genética , Animales , Filogenia , Dominios Proteicos
13.
Front Oncol ; 10: 1032, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32793466

RESUMEN

Purpose: To analyze human and bacteria proteomic profiles in bile, exposed to a tumor vs. non-tumor microenvironment, in order to identify differences between these conditions, which may contribute to a better understanding of pancreatic carcinogenesis. Patients and Methods: Using liquid chromatography and mass spectrometry, human and bacterial proteomic profiles of a total of 20 bile samples (7 from gallstone (GS) patients, and 13 from pancreatic head ductal adenocarcinoma (PDAC) patients) that were collected during surgery and taken directly from the gallbladder, were compared. g:Profiler and KEGG (Kyoto Encyclopedia of Genes and Genomes) Mapper Reconstruct Pathway were used as the main comparative platform focusing on over-represented biological pathways among human proteins and interaction pathways among bacterial proteins. Results: Three bacterial infection pathways were over-represented in the human PDAC group of proteins. IL-8 is the only human protein that coincides in the three pathways and this protein is only present in the PDAC group. Quantitative and qualitative differences in bacterial proteins suggest a dysbiotic microenvironment in the PDAC group, supported by significant participation of antibiotic biosynthesis enzymes. Prokaryotes interaction signaling pathways highlight the presence of zeatin in the GS group and surfactin in the PDAC group, the former in the metabolism of terpenoids and polyketides, and the latter in both metabolisms of terpenoids, polyketides and quorum sensing. Based on our findings, we propose a bacterial-induced carcinogenesis model for the biliary tract. Conclusion: To the best of our knowledge this is the first study with the aim of comparing human and bacterial bile proteins in a tumor vs. non-tumor microenvironment. We proposed a new carcinogenesis model for the biliary tract based on bile metaproteomic findings. Our results suggest that bacteria may be key players in biliary tract carcinogenesis, in a long-lasting dysbiotic and epithelially harmful microenvironment, in which specific bacterial species' biofilm formation is of utmost importance. Our finding should be further explored in future using in vitro and in vivo investigations.

14.
Metallomics ; 12(5): 702-720, 2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32196022

RESUMEN

The tiny contribution of cadmium (Cd) to the composition of the earth's crust contrasts with its high biological significance, owing mainly to the competition of Cd with the essential zinc (Zn) for suitable metal binding sites in proteins. In this context it was speculated that in several animal lineages, the protein family of metallothioneins (MTs) has evolved to specifically detoxify Cd. Although the multi-functionality and heterometallic composition of MTs in most animal species does not support such an assumption, there are some exceptions to this role, particularly in animal lineages at the roots of animal evolution. In order to substantiate this hypothesis and to further understand MT evolution, we have studied MTs of different snails that exhibit clear Cd-binding preferences in a lineage-specific manner. By applying a metallomics approach including 74 MT sequences from 47 gastropod species, and by combining phylogenomic methods with molecular, biochemical, and spectroscopic techniques, we show that Cd selectivity of snail MTs has resulted from convergent evolution of metal-binding domains that significantly differ in their primary structure. We also demonstrate how their Cd selectivity and specificity has been optimized by the persistent impact of Cd through 430 million years of MT evolution, modifying them upon lineage-specific adaptation of snails to different habitats. Overall, our results support the role of Cd for MT evolution in snails, and provide an interesting example of a vestigial abiotic factor directly driving gene evolution. Finally, we discuss the potential implications of our findings for studies devoted to the understanding of mechanisms leading to metal specificity in proteins, which is important when designing metal-selective peptides.


Asunto(s)
Cadmio/farmacología , Evolución Molecular , Metalotioneína/metabolismo , Metales/análisis , Transcriptoma/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Metalotioneína/genética , Filogenia , Homología de Secuencia , Caracoles
15.
J Inorg Biochem ; 206: 110993, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32088593

RESUMEN

Colorectal cancer is the third most common type of cancer and has a high incidence in developed countries. At present, specific treatments are being required to allow individualized therapy depending on the molecular alteration on which the drug may act. The aim of this project is to evaluate whether HPTSC and HPTSC* thiosemicarbazones (HPTSC = pyridine-2-carbaldehyde thiosemicarbazone and HPTSC* = pyridine-2-carbaldehyde 4N-methylthiosemicarbazone), and their complexes with different transition metal ions as Cu(II), Fe(III) and Co(III), have antitumor activity in colon cancer cells (HT-29 and SW-480), that have different oncogenic characteristics. Cytotoxicity was evaluated and the involvement of oxidative stress in its mechanism of action was analyzed by quantifying the superoxide dismutase activity, redox state by quantification of the thioredoxin levels and reduced/oxidized glutathione rate and biomolecules damage. The apoptotic effect was evaluated by measurements of the levels of caspase 9 and 3 and the index of histones. All the metal-thiosemicarbazones have antitumor activity mediated by oxidative stress. The HPTSC*-Cu was the compound that showed the best antitumor and apoptotic characteristics for the cell line SW480, that is KRAS gene mutated.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias del Colon/patología , Compuestos Organometálicos/farmacología , Estrés Oxidativo/efectos de los fármacos , Tiosemicarbazonas/farmacología , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cobalto/química , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Complejos de Coordinación/química , Cobre/química , Ensayos de Selección de Medicamentos Antitumorales , Compuestos Férricos/química , Glutatión/metabolismo , Células HT29 , Humanos , Compuestos Organometálicos/química , Oxidación-Reducción , Piridinas/química , Tiosemicarbazonas/química
16.
Biochemistry ; 58(45): 4570-4581, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31633358

RESUMEN

Metallothioneins (MTs) are cysteine-rich polypeptides that are naturally found coordinated to monovalent and/or divalent transition metal ions. Three metallothionein isoforms from the Roman snail Helix pomatia are known. They differ in their physiological metal load and in their specificity for transition metal ions such as Cd2+ (HpCdMT isoform) and Cu+ (HpCuMT isoform) or in the absence of a defined metal specificity (HpCd/CuMT isoform). We have determined the solution structure of the Cd-specific isoform (HpCdMT) by nuclear magnetic resonance spectroscopy using recombinant isotopically labeled protein loaded with Zn2+ or Cd2+. Both structures display two-domain architectures, where each domain comprises a characteristic three-metal cluster similar to that observed in the ß-domains of vertebrate MTs. The polypeptide backbone is well-structured over the entire sequence, including the interdomain linker. Interestingly, the two domains display mutual contacts, as observed before for the metallothionein of the snail Littorina littorea, to which both N- and C-terminal domains are highly similar. Increasing the length of the linker motionally decouples both domains and removes mutual contacts between them without having a strong effect on the stability of the individual domains. The structures of Cd6- and Zn6-HpCdMT are nearly identical. However, 15N relaxation, in particular 15N R2 rates, is accelerated for many residues of Zn6-HpCdMT but not for Cd6-HpCdMT, revealing the presence of conformational exchange effects. We suggest that this snail MT isoform is evolutionarily optimized for binding Cd rather than Zn.


Asunto(s)
Cadmio/metabolismo , Caracoles Helix/metabolismo , Metalotioneína/metabolismo , Zinc/metabolismo , Animales , Sitios de Unión , Caracoles Helix/química , Metalotioneína/química , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica
17.
Metallomics ; 11(5): 994-1004, 2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-31011727

RESUMEN

Thiosemicarbazones (TSCs) are a class of strong metal ion ligands, which are currently being investigated for several applications, such as anticancer treatment. In addition to these ligands only, which exert their activity upon interaction with metal ions in cells, preformed metal-TSC complexes are also widely studied, predominantly with the essential metal ions iron, copper and zinc. Currently, it is unclear what the active species are, which complexes are present and what are their biological targets. Herein, we study the complexes of copper(ii), zinc(ii) and iron(ii) with three TSCs, PT, 3-AP (triapine) and Dp44mT, (latter two are currently in clinical trials), concerning their reactivity with glutathione (GSH) and Zn7-metallothionein (Zn7MT-1, 2 and 3). These two cysteine-containing molecules can have a major impact on metal-TSC complexes because they are abundant in the cytosol and nucleus, they are strong metal ligands and have the potential to reduce Cu(ii) and Fe(iii). Our results indicate that Fe(ii)-TSC is stable in the presence of typical cytosolic concentrations of GSH and Zn7MT. In contrast, all three Cu(ii)-TSCs react rapidly due to the reduction of Cu(ii) to Cu(i), which is then transferred to MT. This suggests that Cu(ii)-TSCs are rapidly dissociated in a cytosolic-type environment and the catalytic generation of reactive oxygen species by Cu(ii)-TSCs is stopped. Moreover, in the case Cu(ii)-Dp44mT, transmetallation with Zn(ii) from MT occurs. The reaction of Zn(ii)-TSCs is ligand dependent, from predominant dissociation for PT and 3-AP, to very little dissociation of Zn(ii)-Dp44mT2. These results indicate that GSH and Zn7MT may be important factors in the fate of Cu(ii)- and Zn(ii)-TSCs. In particular, for Cu, its chemistry is complex, and these reactions may also occur for other families of Cu-complexes used in cancer treatment or for other applications.


Asunto(s)
Cobre/metabolismo , Glutatión/metabolismo , Hierro/metabolismo , Metalotioneína/metabolismo , Tiosemicarbazonas/metabolismo , Zinc/metabolismo , Concentración de Iones de Hidrógeno , Ligandos , Especies Reactivas de Oxígeno/metabolismo , Espectrofotometría Ultravioleta , Tiosemicarbazonas/química
18.
J Inorg Biochem ; 195: 51-60, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30925401

RESUMEN

Reactive oxygen species (ROS) formation appears as one of the most promising pathways to induce cell death. The interesting Cu(II)/Cu(I) redox pair has been reported to biologically generate ROS and induce cell damage. Simple metal complexes, such as cisplatin, sometimes offer even better properties than others highly accurately synthesized, which imply considerable time and economical efforts. This work relies on the synthesis and characterisation of four existing Cu(II) complexes bearing N-donor ligands, previously used for a totally different intend, but tested now for anticancer purposes. Furthermore, a relationship between their coordinating features, i.e. their redox behaviour, with their biological activity have been inferred to further understand the medicinal role of the Cu(II)/Cu(I) redox pair. Cytotoxicity studies and interactions towards DNA have been assessed, studying both covalent and non-covalent modes of binding via mass spectrometry (MS), UV-Vis and fluorescence, evaluating the cleaving properties of the assayed compounds, as well as their capacity to generate ROS inside the cells. The role of the ligand for one of the complexes has been evaluated by a computational approach. The idea of using "old" complexes for "novel" anticancer purposes can offer promising results in the future, being a simple but interesting approach to study, as we demonstrate here for most of the complexes analysed, showing a non-expected "new" and beneficial role.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Cobre/química , Antineoplásicos/síntesis química , Antineoplásicos/toxicidad , Línea Celular Tumoral , Complejos de Coordinación/síntesis química , Complejos de Coordinación/toxicidad , ADN/efectos de los fármacos , División del ADN/efectos de los fármacos , Reposicionamiento de Medicamentos , Fibroblastos/efectos de los fármacos , Humanos , Ligandos , Estructura Molecular , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad
19.
Metallomics ; 10(11): 1585-1594, 2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-30284576

RESUMEN

The increasing levels of heavy metals derived from human activity are poisoning marine environments, threating zooplankton and ocean food webs. To protect themselves from the harmful effects of heavy metals, living beings have different physiological mechanisms, one of which is based on metallothioneins (MTs), a group of small cysteine-rich proteins that can bind heavy metals counteracting their toxicity. The MT system of urochordate appendicularians, an ecologically relevant component of the zooplankton, remained, however, unknown. In this work, we have characterized the MTs of the appendicularian species Oikopleura dioica, revealing that O. dioica has two MT genes, named OdMT1 and OdMT2, which encode for Cys-rich proteins, the former with 72 amino acids comparable with the small size MTs of other organisms, but the second with 399 amino acids representing the longest MT reported to date for any living being. Sequence analysis revealed that OdMT2 gene arose from a duplication of an ancestral OdMT1 gene followed by up to six tandem duplications of an ancestral repeat unit (RU) in the current OdMT2 gene. Interestingly, each RU contained, in turn, an internal repeat of a 7-Cys subunit (X3CX3CX2CX2CX3-6CX2CXCX), which is repeated up to 12 times in OdMT2. Finally, ICP-AES analyses of heterologously expressed OdMT proteins showed that both MTs were capable to form metal-complexes, with preference for cadmium ions. Collectively, our results provide the first characterization of the MT system in an appendicularian species as an initial step to understand the zooplankton response to metal toxicity and other environmental stress situations.


Asunto(s)
Cadmio/metabolismo , Cisteína/genética , Regulación de la Expresión Génica , Metalotioneína/genética , Metalotioneína/metabolismo , Secuencias Repetidas en Tándem , Urocordados/metabolismo , Secuencia de Aminoácidos , Animales , Cisteína/metabolismo , Regiones Promotoras Genéticas , Elementos Reguladores de la Transcripción , Homología de Secuencia , Urocordados/genética
20.
J Inorg Biochem ; 180: 135-140, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29277024

RESUMEN

The presence of a conserved cysteine residue in the C-terminal amino acid sequences of plant frataxins differentiates these frataxins from those of other kingdoms and may be key in frataxin assembly and function. We report a full study on the ability of Arabidopsis (AtFH) and Zea mays (ZmFH-1 and ZmFH-2) frataxins to assemble into disulfide-bridged dimers by copper-driven oxidation and to revert to monomers by chemical reduction. We monitored the redox assembly-disassembly process by electrospray ionization mass spectrometry, electrophoresis, UV-Vis spectroscopy, and fluorescence measurements. We conclude that plant frataxins AtFH, ZmFH-1 and ZmFH-2 are oxidized by Cu2+ and exhibit redox cysteine monomer - cystine dimer interexchange. Interestingly, the tendency to interconvert is not the same for each protein. Through yeast phenotypic rescue experiments, we show that plant frataxins are important for plant survival under conditions of excess copper, indicating that these proteins might be involved in copper metabolism.


Asunto(s)
Cobre/química , Proteínas de Unión a Hierro/química , Plantas/química , Secuencia de Aminoácidos , Cisteína/química , Dimerización , Disulfuros/química , Electroforesis en Gel de Poliacrilamida Nativa , Oxidación-Reducción , Fenómenos Fisiológicos de las Plantas , Proteínas de Plantas/química , Espectrometría de Fluorescencia , Espectrometría de Masa por Ionización de Electrospray , Espectrofotometría Ultravioleta , Frataxina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA