Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3016, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589367

RESUMEN

Myelodysplastic syndromes (MDS) with mutated SF3B1 gene present features including a favourable outcome distinct from MDS with mutations in other splicing factor genes SRSF2 or U2AF1. Molecular bases of these divergences are poorly understood. Here we find that SF3B1-mutated MDS show reduced R-loop formation predominating in gene bodies associated with intron retention reduction, not found in U2AF1- or SRSF2-mutated MDS. Compared to erythroblasts from SRSF2- or U2AF1-mutated patients, SF3B1-mutated erythroblasts exhibit augmented DNA synthesis, accelerated replication forks, and single-stranded DNA exposure upon differentiation. Importantly, histone deacetylase inhibition using vorinostat restores R-loop formation, slows down DNA replication forks and improves SF3B1-mutated erythroblast differentiation. In conclusion, loss of R-loops with associated DNA replication stress represents a hallmark of SF3B1-mutated MDS ineffective erythropoiesis, which could be used as a therapeutic target.


Asunto(s)
Síndromes Mielodisplásicos , Estructuras R-Loop , Humanos , Factor de Empalme U2AF/genética , Factores de Empalme Serina-Arginina/genética , Factores de Empalme de ARN/genética , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/genética , Mutación , Factores de Transcripción/genética , Fosfoproteínas/genética
2.
PLoS Genet ; 19(8): e1010848, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37585488

RESUMEN

N-terminal ends of polypeptides are critical for the selective co-translational recruitment of N-terminal modification enzymes. However, it is unknown whether specific N-terminal signatures differentially regulate protein fate according to their cellular functions. In this work, we developed an in-silico approach to detect functional preferences in cellular N-terminomes, and identified in S. cerevisiae more than 200 Gene Ontology terms with specific N-terminal signatures. In particular, we discovered that Mitochondrial Targeting Sequences (MTS) show a strong and specific over-representation at position 2 of hydrophobic residues known to define potential substrates of the N-terminal acetyltransferase NatC. We validated mitochondrial precursors as co-translational targets of NatC by selective purification of translating ribosomes, and found that their N-terminal signature is conserved in Saccharomycotina yeasts. Finally, systematic mutagenesis of the position 2 in a prototypal yeast mitochondrial protein confirmed its critical role in mitochondrial protein import. Our work highlights the hydrophobicity of MTS N-terminal residues and their targeting by NatC as important features for the definition of the mitochondrial proteome, providing a molecular explanation for mitochondrial defects observed in yeast or human NatC-depleted cells. Functional mapping of N-terminal residues thus has the potential to support the discovery of novel mechanisms of protein regulation or targeting.


Asunto(s)
Proteoma , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Proteoma/metabolismo , Transporte de Proteínas , Proteínas Fúngicas/metabolismo , Proteínas Mitocondriales/metabolismo
3.
Mol Cell ; 81(11): 2417-2427.e5, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33838103

RESUMEN

mRNA translation is coupled to multiprotein complex assembly in the cytoplasm or to protein delivery into intracellular compartments. Here, by combining systematic RNA immunoprecipitation and single-molecule RNA imaging in yeast, we have provided a complete depiction of the co-translational events involved in the biogenesis of a large multiprotein assembly, the nuclear pore complex (NPC). We report that binary interactions between NPC subunits can be established during translation, in the cytoplasm. Strikingly, the nucleoporins Nup1/Nup2, together with a number of nuclear proteins, are instead translated at nuclear pores, through a mechanism involving interactions between their nascent N-termini and nuclear transport receptors. Uncoupling this co-translational recruitment further triggers the formation of cytoplasmic foci of unassembled polypeptides. Altogether, our data reveal that distinct, spatially segregated modes of co-translational interactions foster the ordered assembly of NPC subunits and that localized translation can ensure the proper delivery of proteins to the pore and the nucleus.


Asunto(s)
Proteínas de Complejo Poro Nuclear/genética , Biosíntesis de Proteínas , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Transporte Activo de Núcleo Celular , Citoplasma/genética , Citoplasma/metabolismo , Regulación Fúngica de la Expresión Génica , Carioferinas/genética , Carioferinas/metabolismo , Poro Nuclear/genética , Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/clasificación , Proteínas de Complejo Poro Nuclear/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/clasificación , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Nat Commun ; 9(1): 1665, 2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29695777

RESUMEN

While the activity of multiprotein complexes is crucial for cellular metabolism, little is known about the mechanisms that collectively control the expression of their components. Here, we investigate the regulations targeting the biogenesis of the nuclear pore complex (NPC), the macromolecular assembly mediating nucleocytoplasmic exchanges. Systematic analysis of RNA-binding proteins interactomes, together with in vivo and in vitro assays, reveal that a subset of NPC mRNAs are specifically bound by Hek2, a yeast hnRNP K-like protein. Hek2-dependent translational repression and protein turnover are further shown to finely tune the levels of NPC subunits. Strikingly, mutations or physiological perturbations altering pore integrity decrease the levels of the NPC-associated SUMO protease Ulp1, and trigger the accumulation of sumoylated versions of Hek2 unable to bind NPC mRNAs. Our results support the existence of a quality control mechanism involving Ulp1 as a sensor of NPC integrity and Hek2 as a repressor of NPC biogenesis.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Retroalimentación Fisiológica , Poro Nuclear/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Biología Computacional , Conjuntos de Datos como Asunto , Unión Proteica/fisiología , ARN Mensajero/metabolismo , Sumoilación/fisiología
5.
Cell ; 167(5): 1201-1214.e15, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27863241

RESUMEN

Chromatin dynamics play an essential role in regulating DNA transaction processes, but it is unclear whether transcription-associated chromatin modifications control the mRNA ribonucleoparticles (mRNPs) pipeline from synthesis to nuclear exit. Here, we identify the yeast ISW1 chromatin remodeling complex as an unanticipated mRNP nuclear export surveillance factor that retains export-incompetent transcripts near their transcription site. This tethering activity of ISW1 requires chromatin binding and is independent of nucleosome sliding activity or changes in RNA polymerase II processivity. Combination of in vivo UV-crosslinking and genome-wide RNA immunoprecipitation assays show that Isw1 and its cofactors interact directly with premature mRNPs. Our results highlight that the concerted action of Isw1 and the nuclear exosome ensures accurate surveillance mechanism that proofreads the efficiency of mRNA biogenesis.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ensamble y Desensamble de Cromatina , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Exosomas/metabolismo , Complejos Multiproteicos/metabolismo , ARN Polimerasa II/metabolismo
6.
Nucleic Acids Res ; 44(18): 8826-8841, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27580715

RESUMEN

The discovery of novel specific ribosome-associated factors challenges the assumption that translation relies on standardized molecular machinery. In this work, we demonstrate that Tma108, an uncharacterized translation machinery-associated factor in yeast, defines a subpopulation of cellular ribosomes specifically involved in the translation of less than 200 mRNAs encoding proteins with ATP or Zinc binding domains. Using ribonucleoparticle dissociation experiments we established that Tma108 directly interacts with the nascent protein chain. Additionally, we have shown that translation of the first 35 amino acids of Asn1, one of the Tma108 targets, is necessary and sufficient to recruit Tma108, suggesting that it is loaded early during translation. Comparative genomic analyses, molecular modeling and directed mutagenesis point to Tma108 as an original M1 metallopeptidase, which uses its putative catalytic peptide-binding pocket to bind the N-terminus of its targets. The involvement of Tma108 in co-translational regulation is attested by a drastic change in the subcellular localization of ATP2 mRNA upon Tma108 inactivation. Tma108 is a unique example of a nascent chain-associated factor with high selectivity and its study illustrates the existence of other specific translation-associated factors besides RNA binding proteins.


Asunto(s)
Aminopeptidasas/metabolismo , Biosíntesis de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , Aminopeptidasas/química , Hibridación Fluorescente in Situ , Mitocondrias/genética , Mitocondrias/metabolismo , Extensión de la Cadena Peptídica de Translación , Unión Proteica , ATPasas de Translocación de Protón/genética , Transporte de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Zinc/metabolismo
7.
Nucleus ; 6(6): 455-61, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26709543

RESUMEN

Nuclear pore complexes (NPCs) have been shown to regulate distinct steps of the gene expression process, from transcription to mRNA export. In particular, mRNAs expressed from intron-containing genes are surveyed by a specific NPC-dependent quality control pathway ensuring that unspliced mRNAs are retained within the nucleus. In this Extra View, we summarize the different approaches that have been developed to evaluate the contribution of various NPC components to the expression of intron-containing genes. We further present the mechanistic models that could account for pre-mRNA retention at the nuclear side of NPCs. Finally, we discuss the possibility that other stages of intron-containing gene expression could be regulated by nuclear pores, in particular through the regulation of mRNA biogenesis factors by the NPC-associated SUMO protease Ulp1.


Asunto(s)
Núcleo Celular/metabolismo , Poro Nuclear/metabolismo , Cisteína Endopeptidasas/metabolismo , Intrones , Modelos Moleculares , Proteínas de Complejo Poro Nuclear/metabolismo , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sumoilación , Transcripción Genética
8.
Nucleic Acids Res ; 43(8): 4249-61, 2015 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-25845599

RESUMEN

Several nuclear pore-associated factors, including the SUMO-protease Ulp1, have been proposed to prevent the export of intron-containing messenger ribonucleoparticles (mRNPs) in yeast. However, the molecular mechanisms of this nuclear pore-dependent mRNA quality control, including the sumoylated targets of Ulp1, have remained unidentified. Here, we demonstrate that the apparent 'pre-mRNA leakage' phenotype arising upon ULP1 inactivation is shared by sumoylation mutants of the THO complex, an early mRNP biogenesis factor. Importantly, we establish that alteration of THO complex activity differentially impairs the expression of intronless and intron-containing reporter genes, rather than triggering bona fide 'pre-mRNA leakage'. Indeed, we show that the presence of introns within THO target genes attenuates the effect of THO inactivation on their transcription. Epistasis analyses further clarify that different nuclear pore components influence intron-containing gene expression at distinct stages. Ulp1, whose maintenance at nuclear pores depends on the Nup84 complex, impacts on THO-dependent gene expression, whereas the nuclear basket-associated Mlp1/Pml39 proteins prevent pre-mRNA export at a later stage, contributing to mRNA quality control. Our study thus highlights the multiplicity of mechanisms by which nuclear pores contribute to gene expression, and further provides the first evidence that intronic sequences can alleviate early mRNP biogenesis defects.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Regulación Fúngica de la Expresión Génica , Intrones , Proteínas de Complejo Poro Nuclear/fisiología , ARN Mensajero/metabolismo , Proteínas de Unión al ADN/genética , Mutación , Poro Nuclear/enzimología , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Precursores del ARN/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sumoilación , Transcripción Genética
9.
Nucleic Acids Res ; 42(8): 5043-58, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24500206

RESUMEN

Assembly of messenger ribonucleoparticles (mRNPs) is a pivotal step in gene expression, but only a few molecular mechanisms contributing to its regulation have been described. Here, through a comprehensive proteomic survey of mRNP assembly, we demonstrate that the SUMO pathway specifically controls the association of the THO complex with mRNPs. We further show that the THO complex, a key player in the interplay between gene expression, mRNA export and genetic stability, is sumoylated on its Hpr1 subunit and that this modification regulates its association with mRNPs. Altered recruitment of the THO complex onto mRNPs in sumoylation-defective mutants does not affect bulk mRNA export or genetic stability, but impairs the expression of acidic stress-induced genes and, consistently, compromises viability in acidic stress conditions. Importantly, inactivation of the nuclear exosome suppresses the phenotypes of the hpr1 non-sumoylatable mutant, showing that SUMO-dependent mRNP assembly is critical to allow a specific subset of mRNPs to escape degradation. This article thus provides the first example of a SUMO-dependent mRNP-assembly event allowing a refined tuning of gene expression, in particular under specific stress conditions.


Asunto(s)
Proteínas Nucleares/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sumoilación , Cisteína Endopeptidasas/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Expresión Génica , Proteoma/metabolismo , Transporte de ARN , ARN Mensajero/metabolismo , Proteína SUMO-1/metabolismo , Estrés Fisiológico/genética , Ubiquitinación
10.
Mol Biol Cell ; 18(8): 2912-23, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17538013

RESUMEN

Increasing evidences suggest that nuclear pore complexes (NPCs) control different aspects of nuclear metabolism, including transcription, nuclear organization, and DNA repair. We previously established that the Nup84 complex, a major NPC building block, is part of a genetic network involved in DNA repair. Here, we show that double-strand break (DSB) appearance is linked to a shared function of the Nup84 and the Nup60/Mlp1-2 complexes. Mutants within these complexes exhibit similar genetic interactions and alteration in DNA repair processes as mutants of the SUMO-protease Ulp1. Consistently, these nucleoporins are required for maintenance of proper Ulp1 levels at NPCs and for the establishment of the appropriate sumoylation of several cellular proteins, including the DNA repair factor Yku70. Moreover, restoration of nuclear envelope-associated Ulp1 in nucleoporin mutants reestablishes proper sumoylation patterns and suppresses DSB accumulation and genetic interactions with DNA repair genes. Our results thus provide a molecular mechanism that underlies the connection between NPC and genome stability.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Daño del ADN , Proteínas de Complejo Poro Nuclear/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Estabilidad de Enzimas , Carioferinas/metabolismo , Mutación/genética , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Fenotipo , Transporte de Proteínas , Proteínas de Unión al ARN , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Nucleic Acids Res ; 32(1): 35-44, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-14704341

RESUMEN

The phosphorylation of the RNA polymerase II (Pol II) C-terminal domain (CTD) has been shown to affect the initiation, and transition to elongation of the Pol II complex. The differential phosphorylation of serines within this domain coincides with the recruitment of factors important for pre-mRNA processing and transcriptional elongation. A role for tyrosine and threonine phosphorylation has yet to be described. The discovery of kinases that express a preference for specific residues within this sequence suggests a mechanism for the controlled recruitment and displacement of CTD-interacting partners during the transcription cycle. The last CTD repeat (CTD52) contains unique interaction sites for the only known CTD tyrosine kinases, Abl1/c-Abl and Abl2/Arg, and the serine/threonine kinase casein kinase II (CKII). Here, we show that removal or severe disruption of the last CTD repeat, but not point mutation of its CKII sites, results in its proteolytic degradation to the Pol IIb form in vivo, but does not appear to affect the specific transcription of genes. These results suggest a possible mechanism of transcription control through the proteolytic removal of the Pol II CTD.


Asunto(s)
Procesamiento Proteico-Postraduccional , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Secuencias Repetitivas de Aminoácido , Secuencia de Aminoácidos , Línea Celular Tumoral , Supervivencia Celular , Estabilidad de Enzimas , Expresión Génica , Humanos , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fosforilación , Mutación Puntual/genética , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Polimerasa II/genética , Eliminación de Secuencia/genética , Transcripción Genética
12.
J Biol Chem ; 277(39): 36061-7, 2002 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-12138108

RESUMEN

Dephosphorylation of RNA polymerase II carboxyl-terminal domain (CTD) is required to resume sequential transcription cycles. FCP1 (TFIIF-dependent CTD phosphatase 1) is the only known phosphatase targeting RNAP II CTD. Here we show that in Xenopus laevis cells, xFCP1 is a phosphoprotein. On the basis of biochemical fractionation and drug sensitivity, casein kinase 2 (CK2) is shown to be the major kinase involved in xFCP1 phosphorylation in X. laevis egg extracts. CK2 phosphorylates xFCP1 mainly at a cluster of serines centered on Ser(457). CK2-dependent phosphorylation enhances 4-fold the CTD phosphatase activity of FCP1 and its binding to the RAP74 subunit of general transcription factor TFIIF. These findings unravel a new mechanism regulating CTD phosphorylation and hence class II gene transcription.


Asunto(s)
Fosfoproteínas Fosfatasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Polimerasa II/metabolismo , Factores de Transcripción TFII/metabolismo , Secuencia de Aminoácidos , Animales , Western Blotting , Quinasa de la Caseína II , Cromatografía , Relación Dosis-Respuesta a Droga , Electroforesis en Gel de Poliacrilamida , Regulación Enzimológica de la Expresión Génica , Glutatión/metabolismo , Datos de Secuencia Molecular , Fosfoproteínas Fosfatasas/química , Fosfoproteínas/química , Fosforilación , Plásmidos/metabolismo , Pruebas de Precipitina , Unión Proteica , Proteína Fosfatasa 1 , Estructura Terciaria de Proteína , Proteínas Recombinantes/metabolismo , Sefarosa/metabolismo , Serina/metabolismo , Factores de Tiempo , Factores de Transcripción TFII/química , Transcripción Genética , Xenopus , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA