Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Nat Biotechnol ; 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191664

RESUMEN

Prime editing enables precise installation of genomic substitutions, insertions and deletions in living systems. Efficient in vitro and in vivo delivery of prime editing components, however, remains a challenge. Here we report prime editor engineered virus-like particles (PE-eVLPs) that deliver prime editor proteins, prime editing guide RNAs and nicking single guide RNAs as transient ribonucleoprotein complexes. We systematically engineered v3 and v3b PE-eVLPs with 65- to 170-fold higher editing efficiency in human cells compared to a PE-eVLP construct based on our previously reported base editor eVLP architecture. In two mouse models of genetic blindness, single injections of v3 PE-eVLPs resulted in therapeutically relevant levels of prime editing in the retina, protein expression restoration and partial visual function rescue. Optimized PE-eVLPs support transient in vivo delivery of prime editor ribonucleoproteins, enhancing the potential safety of prime editing by reducing off-target editing and obviating the possibility of oncogenic transgene integration.

2.
Mol Ther Nucleic Acids ; 29: 823-835, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36159595

RESUMEN

Stargardt disease (STGD) is the most common form of inherited retinal genetic disorders and is often caused by mutations in ABCA4. Gene therapy has the promise to effectively treat monogenic retinal disorders. However, clinically approved adeno-associated virus (AAV) vectors do not have a loading capacity for large genes, such as ABCA4. Self-assembly nanoparticles composed of (1-aminoethyl)iminobis[N-(oleoylcysteinyl-1-amino-ethyl)propionamide (ECO; a multifunctional pH-sensitive/ionizable amino lipid) and plasmid DNA produce gene transfection comparable with or better than the AAV2 capsid. Stable PEG-ECO/pGRK1-ABCA4-S/MAR nanoparticles produce specific and prolonged expression of ABCA4 in the photoreceptors of Abca4 -/- mice and significantly inhibit accumulation of toxic A2E in the eye. Multiple subretinal injections enhance gene expression and therapeutic efficacy with an approximately 69% reduction in A2E accumulation in Abca4 -/- mice after 3 doses. Very mild inflammation was observed after multiple injections of the nanoparticles. PEG-ECO/pGRK1-ABCA4-S/MAR nanoparticles are a promising non-viral mediated gene therapy modality for STGD type 1 (STGD1).

3.
Cells ; 11(8)2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35456012

RESUMEN

Skeletal muscle repair is initiated by local inflammation and involves the engulfment of dead cells (efferocytosis) by infiltrating macrophages at the injury site. Macrophages orchestrate the whole repair program, and efferocytosis is a key event not only for cell clearance but also for triggering the timed polarization of the inflammatory phenotype of macrophages into the healing one. While pro-inflammatory cytokines produced by the inflammatory macrophages induce satellite cell proliferation and differentiation into myoblasts, healing macrophages initiate the resolution of inflammation, angiogenesis, and extracellular matrix formation and drive myoblast fusion and myotube growth. Therefore, improper efferocytosis results in impaired muscle repair. Retinol saturase (RetSat) initiates the formation of various dihydroretinoids, a group of vitamin A derivatives that regulate transcription by activating retinoid receptors. Previous studies from our laboratory have shown that RetSat-null macrophages produce less milk fat globule-epidermal growth factor-factor-8 (MFG-E8), lack neuropeptide Y expression, and are characterized by impaired efferocytosis. Here, we investigated skeletal muscle repair in the tibialis anterior muscle of RetSat-null mice following cardiotoxin injury. Our data presented here demonstrate that, unexpectedly, several cell types participating in skeletal muscle regeneration compensate for the impaired macrophage functions, resulting in normal muscle repair in the RetSat-null mice.


Asunto(s)
Macrófagos , Vitamina A , Animales , Inflamación/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Músculo Esquelético/fisiología , Fagocitosis , Vitamina A/metabolismo
4.
Nat Commun ; 13(1): 1830, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35383196

RESUMEN

Leber congenital amaurosis (LCA) is the most common cause of inherited retinal degeneration in children. LCA patients with RPE65 mutations show accelerated cone photoreceptor dysfunction and death, resulting in early visual impairment. It is therefore crucial to develop a robust therapy that not only compensates for lost RPE65 function but also protects photoreceptors from further degeneration. Here, we show that in vivo correction of an Rpe65 mutation by adenine base editor (ABE) prolongs the survival of cones in an LCA mouse model. In vitro screening of ABEs and sgRNAs enables the identification of a variant that enhances in vivo correction efficiency. Subretinal delivery of ABE and sgRNA corrects up to 40% of Rpe65 transcripts, restores cone-mediated visual function, and preserves cones in LCA mice. Single-cell RNA-seq reveals upregulation of genes associated with cone phototransduction and survival. Our findings demonstrate base editing as a potential gene therapy that confers long-lasting retinal protection.


Asunto(s)
Amaurosis Congénita de Leber , Degeneración Retiniana , cis-trans-Isomerasas , Animales , Proteínas del Ojo/genética , Humanos , Amaurosis Congénita de Leber/genética , Amaurosis Congénita de Leber/terapia , Ratones , Ratones Noqueados , Células Fotorreceptoras Retinianas Conos/fisiología , Degeneración Retiniana/complicaciones , Degeneración Retiniana/genética , Degeneración Retiniana/terapia , cis-trans-Isomerasas/genética
5.
Cell ; 185(2): 250-265.e16, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35021064

RESUMEN

Methods to deliver gene editing agents in vivo as ribonucleoproteins could offer safety advantages over nucleic acid delivery approaches. We report the development and application of engineered DNA-free virus-like particles (eVLPs) that efficiently package and deliver base editor or Cas9 ribonucleoproteins. By engineering VLPs to overcome cargo packaging, release, and localization bottlenecks, we developed fourth-generation eVLPs that mediate efficient base editing in several primary mouse and human cell types. Using different glycoproteins in eVLPs alters their cellular tropism. Single injections of eVLPs into mice support therapeutic levels of base editing in multiple tissues, reducing serum Pcsk9 levels 78% following 63% liver editing, and partially restoring visual function in a mouse model of genetic blindness. In vitro and in vivo off-target editing from eVLPs was virtually undetected, an improvement over AAV or plasmid delivery. These results establish eVLPs as promising vehicles for therapeutic macromolecule delivery that combine key advantages of both viral and nonviral delivery.


Asunto(s)
Sistemas de Liberación de Medicamentos , Ingeniería Genética , Proteínas/uso terapéutico , Virión/genética , Animales , Secuencia de Bases , Ceguera/genética , Ceguera/terapia , Encéfalo/metabolismo , ADN/metabolismo , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Edición Génica , Células HEK293 , Humanos , Hígado/patología , Ratones , Ratones Endogámicos C57BL , Proproteína Convertasa 9/metabolismo , Epitelio Pigmentado de la Retina/patología , Retroviridae , Virión/ultraestructura , Visión Ocular
6.
J Transl Med ; 20(1): 21, 2022 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-34998409

RESUMEN

BACKGROUND: Pathogenic gain of function variants in Valosin-containing protein (VCP) cause a unique disease characterized by inclusion body myopathy with early-onset Paget disease of bone and frontotemporal dementia (also known as Multisystem proteinopathy (MSP)). Previous studies in drosophila models of VCP disease indicate treatment with VCP inhibitors mitigates disease pathology. Earlier-generation VCP inhibitors display off-target effects and relatively low therapeutic potency. New generation of VCP inhibitors needs to be evaluated in a mouse model of VCP disease. In this study, we tested the safety and efficacy of a novel and potent VCP inhibitor, CB-5083 using VCP patient-derived myoblast cells and an animal model of VCP disease. METHODS: First, we analyzed the effect of CB-5083 in patient-derived myoblasts on the typical disease autophagy and TDP-43 profile by Western blot. Next, we determined the maximum tolerated dosage of CB-5083 in mice and treated the 2-month-old VCPR155H/R155H mice for 5 months with 15 mg/kg CB-5083. We analyzed motor function monthly by Rotarod; and we assessed the end-point blood toxicology, and the muscle and brain pathology, including autophagy and TDP-43 profile, using Western blot and immunohistochemistry. We also treated 12-month-old VCPR155H/+ mice for 6 months and performed similar analysis. Finally, we assessed the potential side effects of CB-5083 on retinal function, using electroretinography in chronically treated VCPR155H/155H mice. RESULTS: In vitro analyses using patient-derived myoblasts confirmed that CB-5083 can modulate expression of the proteins in the autophagy pathways. We found that chronic CB-5083 treatment is well tolerated in the homozygous mice harboring patient-specific VCP variant, R155H, and can ameliorate the muscle pathology characteristic of the disease. VCP-associated pathology biomarkers, such as elevated TDP-43 and p62 levels, were significantly reduced. Finally, to address the potential adverse effect of CB-5083 on visual function observed in a previous oncology clinical trial, we analyzed retinal function in mice treated with moderate doses of CB-5083 for 5 months and documented the absence of permanent ocular toxicity. CONCLUSIONS: Altogether, these findings suggest that long-term use of CB-5083 by moderate doses is safe and can improve VCP disease-associated muscle pathology. Our results provide translationally relevant evidence that VCP inhibitors could be beneficial in the treatment of VCP disease.


Asunto(s)
Enfermedades Musculares , Animales , Humanos , Cuerpos de Inclusión/metabolismo , Indoles , Ratones , Músculos/metabolismo , Enfermedades Musculares/etiología , Enfermedades Musculares/metabolismo , Mutación , Pirimidinas , Proteína que Contiene Valosina/metabolismo
7.
J Biol Chem ; 297(6): 101401, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34774799

RESUMEN

The elongated cilia of the outer segment of rod and cone photoreceptor cells can contain concentrations of visual pigments of up to 5 mM. The rod visual pigments, G protein-coupled receptors called rhodopsins, have a propensity to self-aggregate, a property conserved among many G protein-coupled receptors. However, the effect of rhodopsin oligomerization on G protein signaling in native cells is less clear. Here, we address this gap in knowledge by studying rod phototransduction. As the rod outer segment is known to adjust its size proportionally to overexpression or reduction of rhodopsin expression, genetic perturbation of rhodopsin cannot be used to resolve this question. Therefore, we turned to high-throughput screening of a diverse library of 50,000 small molecules and used a novel assay for the detection of rhodopsin dimerization. This screen identified nine small molecules that either disrupted or enhanced rhodopsin dimer contacts in vitro. In a subsequent cell-free binding study, we found that all nine compounds decreased intrinsic fluorescence without affecting the overall UV-visible spectrum of rhodopsin, supporting their actions as allosteric modulators. Furthermore, ex vivo electrophysiological recordings revealed that a disruptive, hit compound #7 significantly slowed down the light response kinetics of intact rods, whereas compound #1, an enhancing hit candidate, did not substantially affect the photoresponse kinetics but did cause a significant reduction in light sensitivity. This study provides a monitoring tool for future investigation of the rhodopsin signaling cascade and reports the discovery of new allosteric modulators of rhodopsin dimerization that can also alter rod photoreceptor physiology.


Asunto(s)
Multimerización de Proteína , Células Fotorreceptoras Retinianas Conos/metabolismo , Rodopsina/metabolismo , Segmento Externo de la Célula en Bastón/metabolismo , Animales , Línea Celular Tumoral , Humanos , Ratones , Rodopsina/antagonistas & inhibidores
8.
J Pharmacol Exp Ther ; 378(1): 31-41, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33931547

RESUMEN

CB-5083 is an inhibitor of p97/valosin-containing protein (VCP), for which phase I trials for cancer were terminated because of adverse effects on vision, such as photophobia and dyschromatopsia. Lower dose CB-5083 could combat inclusion body myopathy with early-onset Paget disease and frontotemporal dementia or multisystem proteinopathy caused by gain-of-function mutations in VCP. We hypothesized that the visual impairment in the cancer trial was due to CB-5083's inhibition of phosphodiesterase (PDE)-6, which mediates signal transduction in photoreceptors. To test our hypothesis, we used in vivo and ex vivo electroretinography (ERG) in mice and a PDE6 activity assay of bovine rod outer segment (ROS) extracts. Additionally, histology and optical coherence tomography were used to assess CB-5083's long-term ocular toxicity. A single administration of CB-5083 led to robust ERG signal deterioration, specifically in photoresponse kinetics. Similar recordings with known PDE inhibitors sildenafil, tadalafil, vardenafil, and zaprinast showed that only vardenafil had as strong an effect on the ERG signal in vivo as did CB-5083. In the biochemical assay, CB-5083 inhibited PDE6 activity with a potency higher than sildenafil but lower than that of vardenafil. Ex vivo ERG revealed a PDE6 inhibition constant of 80 nM for CB-5083, which is 7-fold smaller than that for sildenafil. Finally, we showed that the inhibitory effect of CB-5083 on visual function is reversible, and its chronic administration does not cause permanent retinal anomalies in aged VCP-disease model mice. Our results warrant re-evaluation of CB-5083 as a clinical therapeutic agent. We recommend preclinical ERG recordings as a routine drug safety screen. SIGNIFICANCE STATEMENT: This report supports the use of a valosin-containing protein (VCP) inhibitor drug, CB-5083, for the treatment of neuromuscular VCP disease despite CB-5083's initial clinical failure for cancer treatment due to side effects on vision. The data show that CB-5083 displays a dose-dependent but reversible inhibitory action on phosphodiesterase-6, an essential enzyme in retinal photoreceptor function, but no long-term consequences on retinal function or structure.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/antagonistas & inhibidores , Indoles/farmacología , Pirimidinas/farmacología , Retina/efectos de los fármacos , Proteína que Contiene Valosina/antagonistas & inhibidores , Animales , Bovinos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo , Relación Dosis-Respuesta a Droga , Electrorretinografía/métodos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Estimulación Luminosa/métodos , Retina/metabolismo , Proteína que Contiene Valosina/metabolismo
9.
JCI Insight ; 6(9)2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33784255

RESUMEN

The retinal pigment epithelium (RPE) provides vital metabolic support for retinal photoreceptor cells and is an important player in numerous retinal diseases. Gene manipulation in mice using the Cre-LoxP system is an invaluable tool for studying the genetic basis of these retinal diseases. However, existing RPE-targeted Cre mouse lines have critical limitations that restrict their reliability for studies of disease pathogenesis and treatment, including mosaic Cre expression, inducer-independent activity, off-target Cre expression, and intrinsic toxicity. Here, we report the generation and characterization of a knockin mouse line in which a P2A-CreERT2 coding sequence is fused with the native RPE-specific 65 kDa protein (Rpe65) gene for cotranslational expression of CreERT2. Cre+/- mice were able to recombine a stringent Cre reporter allele with more than 99% efficiency and absolute RPE specificity upon tamoxifen induction at both postnatal days (PD) 21 and 50. Tamoxifen-independent Cre activity was negligible at PD64. Moreover, tamoxifen-treated Cre+/- mice displayed no signs of structural or functional retinal pathology up to 4 months of age. Despite weak RPE65 expression from the knockin allele, visual cycle function was normal in Cre+/- mice. These data indicate that Rpe65CreERT2 mice are well suited for studies of gene function and pathophysiology in the RPE.


Asunto(s)
Modelos Animales de Enfermedad , Ratones , Modelos Animales , Receptores de Estrógenos/genética , Enfermedades de la Retina/genética , Epitelio Pigmentado de la Retina/metabolismo , cis-trans-Isomerasas/genética , Animales , Técnicas de Sustitución del Gen , Integrasas/genética , Ratones Transgénicos , Reproducibilidad de los Resultados , Enfermedades de la Retina/metabolismo , Enfermedades de la Retina/fisiopatología , Epitelio Pigmentado de la Retina/fisiopatología , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Tamoxifeno/farmacología , cis-trans-Isomerasas/metabolismo
10.
Bioconjug Chem ; 32(3): 572-583, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33677964

RESUMEN

Safe and effective molecular therapeutics for prophylactic treatment of retinal degenerative diseases are greatly needed. Disruptions in the clearance of all-trans-retinal (atRAL) by the visual (retinoid) cycle of the retina can lead to the accumulation of atRAL and its condensation products known to initiate progressive retinal dystrophy. Retinylamine (Ret-NH2) and its analogues are known to be effective in lowering the concentration of atRAL within the eye and thus preventing retinal degeneration in mouse models of human retinopathies. Here, we chemically modified Ret-NH2 with amino acids and peptides to improve the stability and ocular bioavailability of the resulting derivatives and to minimize their side effects. Fourteen Ret-NH2 derivatives were synthesized and tested in vitro and in vivo. These derivatives exhibited structure-dependent therapeutic efficacy in preventing light-induced retinal degeneration in Abca4-/-Rdh8-/- double-knockout mice, with the compounds containing glycine and/or L-valine generally exhibiting greater protective effects than Ret-NH2 or other tested amino acid derivatives of Ret-NH2. Ret-NH2-L-valylglycine amide (RVG) exhibited good stability in storage; and effective uptake and prolonged retention in mouse eyes. RVG readily formed a Schiff base with atRAL and did not inhibit RPE65 enzymatic activity. Administered by oral gavage, this retinoid also provided effective protection against light-induced retinal degeneration in Abca4-/-Rdh8-/- mice. Notably, the treatment with RVG had minimal effects on the regeneration of 11-cis-retinal and recovery of retinal function. RVG holds promise as a lead therapy for effective and safe treatment of human retinal degenerative diseases.


Asunto(s)
Diterpenos/farmacología , Péptidos/farmacología , Degeneración Retiniana/prevención & control , Visión Ocular/efectos de los fármacos , Transportadoras de Casetes de Unión a ATP/genética , Oxidorreductasas de Alcohol/genética , Animales , Diterpenos/química , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Degeneración Retiniana/fisiopatología
11.
J Control Release ; 330: 329-340, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33358976

RESUMEN

It is still a challenge to develop gene replacement therapy for retinal disorders caused by mutations in large genes, such as Stargardt disease (STGD). STGD is caused by mutations in ABCA4 gene. Previously, we have developed an effective non-viral gene therapy using self-assembled nanoparticles of a multifunctional pH-sensitive amino lipid ECO and a therapeutic ABCA4 plasmid containing rhodopsin promoter (pRHO-ABCA4). In this study, we modified the ABCA4 plasmid with simian virus 40 enhancer (SV40, pRHO-ABCA4-SV40) for enhanced gene expression. We also prepared and assessed the formulations of ECO/pDNA nanoparticles using sucrose or sorbitol as a stablilizer to develop consistent and stable formulations. Results demonstrated that ECO formed stable nanoparticles with pRHO-ABCA4-SV40 in the presence of sucrose, but not with sorbitol. The transfection efficiency in vitro increased significantly after introduction of SV40 enhancer for plasmid pCMV-ABCA4-SV40 with a CMV promoter. Sucrose didn't affect the transfection efficiency, while sorbitol resulted in a fluctuation of the in vitro transfection efficiency. Subretinal gene therapy in Abca4-/- mice using ECO/pRHO-ABCA4 and ECO/pRHO-ABCA4-SV40 nanoparticles induced 36% and 29% reduction in A2E accumulation respectively. Therefore, the ECO/pABCA4 based nanoparticles are promising for non-viral gene therapy for Stargardt disease and can be expended for applications in a variety of visual dystrophies with mutated large genes.


Asunto(s)
Nanopartículas , Virus 40 de los Simios , Transportadoras de Casetes de Unión a ATP/genética , Animales , Terapia Genética , Ratones , Mutación , Enfermedad de Stargardt
12.
Proc Natl Acad Sci U S A ; 117(36): 22532-22543, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32848058

RESUMEN

High-resolution imaging techniques capable of detecting identifiable endogenous fluorophores in the eye along with genetic testing will dramatically improve diagnostic capabilities in the ophthalmology clinic and accelerate the development of new treatments for blinding diseases. Two-photon excitation (TPE)-based imaging overcomes the filtering of ultraviolet light by the lens of the human eye and thus can be utilized to discover defects in vitamin A metabolism during the regeneration of the visual pigments required for the detection of light. Combining TPE with fluorescence lifetime imaging (FLIM) and spectral analyses offers the potential of detecting diseases of the retina at earlier stages before irreversible structural damage has occurred. The main barriers to realizing the benefits of TPE for imaging the human retina arise from concerns about the high light exposure typically needed for informative TPE imaging and the requirement to correlate the ensuing data with different states of health and disease. To overcome these hurdles, we improved TPE efficiency by controlling temporal properties of the excitation light and employed phasor analyses to FLIM and spectral data in mouse models of retinal diseases. Modeling of retinal photodamage revealed that plasma-mediated effects do not play a role and that melanin-related thermal effects are mitigated by reducing pulse repetition frequency. By using noninvasive TPE imaging we identified molecular components of individual granules in the retinal pigment epithelium and present their analytical characteristics.


Asunto(s)
Biopsia/métodos , Imagen Óptica/métodos , Retina/diagnóstico por imagen , Animales , Modelos Animales de Enfermedad , Colorantes Fluorescentes , Ratones , Ratones Endogámicos C57BL , Retina/química , Enfermedades de la Retina/diagnóstico por imagen , Epitelio Pigmentado de la Retina/química , Epitelio Pigmentado de la Retina/diagnóstico por imagen
13.
Biomolecules ; 9(11)2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31766264

RESUMEN

Apoptosis and the proper clearance of apoptotic cells play a central role in maintaining tissue homeostasis. Previous work in our laboratory has shown that when a high number of cells enters apoptosis in a tissue, the macrophages that engulf them produce retinoids to enhance their own phagocytic capacity by upregulating several phagocytic genes. Our data indicated that these retinoids might be dihydroretinoids, which are products of the retinol saturase (RetSat) pathway. In the present study, the efferocytosis of RetSat-null mice was investigated. We show that among the retinoid-sensitive phagocytic genes, only transglutaminase 2 responded in macrophages and in differentiating monocytes to dihydroretinol. Administration of dihydroretinol did not affect the expression of the tested genes differently between differentiating wild type and RetSat-null monocytes, despite the fact that the expression of RetSat was induced. However, in the absence of RetSat, the expression of numerous differentiation-related genes was altered. Among these, impaired production of MFG-E8, a protein that bridges apoptotic cells to the αvß3/ß5 integrin receptors of macrophages, resulted in impaired efferocytosis, very likely causing the development of mild autoimmunity in aged female mice. Our data indicate that RetSat affects monocyte/macrophage differentiation independently of its capability to produce dihydroretinol at this stage.


Asunto(s)
Envejecimiento/inmunología , Apoptosis/inmunología , Enfermedades Autoinmunes/inmunología , Macrófagos/inmunología , Monocitos/inmunología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/deficiencia , Envejecimiento/genética , Envejecimiento/patología , Animales , Apoptosis/genética , Enfermedades Autoinmunes/enzimología , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/patología , Femenino , Macrófagos/enzimología , Macrófagos/patología , Ratones , Ratones Noqueados , Monocitos/enzimología , Monocitos/patología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/inmunología
14.
FASEB J ; 33(8): 9526-9539, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31121099

RESUMEN

The classic concept that GPCRs function as monomers has been challenged by the emerging evidence of GPCR dimerization and oligomerization. Rhodopsin (Rh) is the only GPCR whose native oligomeric arrangement was revealed by atomic force microscopy demonstrating that Rh exists as a dimer. However, the role of Rh dimerization in retinal physiology is currently unknown. In this study, we identified econazole and sulconazole, two small molecules that disrupt Rh dimer contacts, by implementing a cell-based high-throughput screening assay. Racemic mixtures of identified lead compounds were separated and tested for their stereospecific binding to Rh using UV-visible spectroscopy and intrinsic fluorescence of tryptophan (Trp) 265 after illumination. By following the changes in UV-visible spectra and Trp265 fluorescence in vitro, we found that binding of R-econazole modulates the formation of Meta III and quenches the intrinsic fluorescence of Trp265. In addition, electrophysiological ex vivo recording revealed that R-econazole slows photoresponse kinetics, whereas S-econazole decreased the sensitivity of rods without effecting the kinetics. Thus, this study contributes new methodology to identify compounds that disrupt the dimerization of GPCRs in general and validates the first active compounds that disrupt the Rh dimer specifically.-Getter, T., Gulati, S., Zimmerman, R., Chen, Y., Vinberg, F., Palczewski, K. Stereospecific modulation of dimeric rhodopsin.


Asunto(s)
Rodopsina/química , Rodopsina/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Econazol/farmacología , Electrofisiología , Humanos , Imidazoles/farmacología , Immunoblotting , Cinética , Multimerización de Proteína/efectos de los fármacos
15.
J Biol Chem ; 294(24): 9461-9475, 2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-31073029

RESUMEN

The retinoid cycle is a metabolic process in the vertebrate retina that continuously regenerates 11-cis-retinal (11-cisRAL) from the all-trans-retinal (atRAL) isomer. atRAL accumulation can cause photoreceptor degeneration and irreversible visual dysfunction associated with incurable blinding retinal diseases, such as Stargardt disease, retinitis pigmentosa (RP), and atrophic age-related macular degeneration (AMD). The underlying cellular mechanisms leading to retinal degeneration remain uncertain, although previous studies have shown that atRAL promotes calcium influx associated with cell apoptosis. To identify compounds that mitigate the effects of atRAL toxicity, here we developed an unbiased and robust image-based assay that can detect changes in intracellular calcium levels in U2OS cells. Using our assay in a high-throughput screen of 2,400 compounds, we noted that selective estrogen receptor modulators (SERMs) potently stabilize intracellular calcium and thereby counteract atRAL-induced toxicity. In a light-induced retinal degeneration mouse model (Abca4-/-Rdh8-/-), raloxifene (a benzothiophene-type scaffold SERM) prevented the onset of photoreceptor apoptosis and thus protected the retina from degeneration. The minor structural differences between raloxifene and one of its derivatives (Y 134) had a major impact on calcium homeostasis after atRAL exposure in vitro, and we verified this differential impact in vivo In summary, the SERM raloxifene has structural and functional neuroprotective effects in the retina. We propose that the highly sensitive image-based assay developed here could be applied for the discovery of additional drug candidates preventing photoreceptor degeneration.


Asunto(s)
Células Fotorreceptoras de Vertebrados/citología , Sustancias Protectoras/farmacología , Clorhidrato de Raloxifeno/farmacología , Degeneración Retiniana/prevención & control , Epitelio Pigmentado de la Retina/citología , Retinaldehído/toxicidad , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Transportadoras de Casetes de Unión a ATP/fisiología , Oxidorreductasas de Alcohol/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Noqueados , Células Fotorreceptoras de Vertebrados/efectos de los fármacos , Células Fotorreceptoras de Vertebrados/metabolismo , Degeneración Retiniana/inducido químicamente , Degeneración Retiniana/patología , Epitelio Pigmentado de la Retina/efectos de los fármacos
16.
Invest Ophthalmol Vis Sci ; 60(5): 1442-1453, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30947334

RESUMEN

Purpose: The purpose of this study was to test the extent of light damage in different models of night blindness and apply these paradigms in testing the therapeutic efficacy of combination therapy by drugs acting on the Gi, Gs, and Gq protein-coupled receptors. Methods: Acute bright light exposure was used to test susceptibility to light damage in mice lacking the following crucial phototransduction proteins: rod transducin (GNAT1), cone transducin (GNAT2), visual arrestin 1 (ARR1), and rhodopsin kinase 1 (GRK1). Mice were intraperitoneally injected with either vehicle or drug combination consisting of metoprolol (ß1-receptor antagonist), bromocriptine (dopamine family-2 receptor agonist) and tamsulosin (α1-receptor antagonist) before bright light exposure. Light damage was primarily assessed with optical coherence tomography and inspection of cone population in retinal whole mounts. Retinal inflammation was assessed in a subset of experiments using autofluorescence imaging by scanning laser ophthalmoscopy and by postmortem inspection of microglia and astrocyte activity. Results: The Gnat1-/- mice showed slightly increased susceptibility to rod light damage, whereas the Gnat2-/- mice were very resistant. The Arr1-/- and Grk1-/- mice were sensitive for both rod and cone light damage and showed robust retinal inflammation 7 days after bright light exposure. Pretreatment with metoprolol + bromocriptine + tamsulosin rescued the retina in all genetic backgrounds, starting at doses of 0.2 mg/kg metoprolol, 0.02 mg/kg bromocriptine, and 0.01 mg/kg tamsulosin in the Gnat1-/- mice. The therapeutic drug doses increased in parallel with light-damage severity. Conclusions: Our results suggest that congenital stationary night blindness and Oguchi disease patients can be at an elevated risk of the toxic effects of bright light. Furthermore, systems pharmacology drug regimens that stimulate Gi signaling and attenuate Gs and Gq signaling present a promising disease-modifying therapy for photoreceptor degenerative diseases.


Asunto(s)
Antagonistas de Receptores Adrenérgicos alfa 1/uso terapéutico , Antagonistas de Receptores Adrenérgicos beta 1/uso terapéutico , Bromocriptina/farmacología , Luz/efectos adversos , Metoprolol/farmacología , Ceguera Nocturna/tratamiento farmacológico , Tamsulosina/farmacología , Animales , Arrestinas/deficiencia , Modelos Animales de Enfermedad , Quinasa 1 del Receptor Acoplado a Proteína-G/deficiencia , Ratones , Transducina/deficiencia , Estados Unidos , United States Food and Drug Administration
17.
FASEB J ; 33(3): 3680-3692, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30462532

RESUMEN

Retinitis pigmentosa is a devastating, blinding disorder that affects 1 in 4000 people worldwide. During the progression of the disorder, phagocytic clearance of dead photoreceptor cell bodies has a protective role by preventing additional retinal damage from accumulation of cellular debris. However, the cells responsible for the clearance remain unidentified. Taking advantage of a mouse model of retinitis pigmentosa ( RhoP23H/P23H), we clarified the roles of Müller glia in the phagocytosis of rod photoreceptor cells. During the early stage of retinal degeneration, Müller glial cells participated in the phagocytosis of dying or dead rod photoreceptors throughout the outer nuclear layer. Nearly 50% of Müller glia engaged in phagocytosis. Among the Müller phagosomes, >90% matured into phagolysosomes. Those observations indicated that Müller glial cells are the primary contributor to phagocytosis. In contrast, macrophages migrate to the inner part of the outer nuclear layer during photoreceptor degeneration, participating in the phagocytosis of a limited population of dying or dead photoreceptor cells. In healthy retinas of wild-type mice, Müller glial cells phagocytosed cell bodies of dead rod photoreceptors albeit at a lower frequency. Taken together, the phagocytic function of Müller glia is responsible for retinal homeostasis and reorganization under normal and pathologic conditions.-Sakami, S., Imanishi, Y., Palczewski, K. Müller glia phagocytose dead photoreceptor cells in a mouse model of retinal degenerative disease.


Asunto(s)
Neuroglía/patología , Fagocitosis/fisiología , Retina/patología , Células Fotorreceptoras Retinianas Conos/patología , Degeneración Retiniana/patología , Células Fotorreceptoras Retinianas Bastones/patología , Animales , Modelos Animales de Enfermedad , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Retinitis Pigmentosa/patología
18.
Mol Pharmacol ; 94(4): 1132-1144, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30018116

RESUMEN

Continuous regeneration of the 11-cis-retinal visual chromophore from all-trans-retinal is critical for vision. Insufficiency of 11-cis-retinal arising from the dysfunction of key proteins involved in its regeneration can impair retinal health, ultimately leading to loss of human sight. Delayed recovery of visual sensitivity and night blindness caused by inadequate regeneration of the visual pigment rhodopsin are typical early signs of this condition. Excessive concentrations of unliganded, constitutively active opsin and increased levels of all-trans-retinal and its byproducts in photoreceptors also accelerate retinal degeneration after light exposure. Exogenous 9-cis-retinal iso-chromophore can reduce the toxicity of ligand-free opsin but fails to prevent the buildup of retinoid photoproducts when their clearance is defective in human retinopathies, such as Stargardt disease or age-related macular degeneration. Here we evaluated the effect of a locked chromophore analog, 11-cis-6-membered ring-retinal against bright light-induced retinal degeneration in Abca4-/-Rdh8-/- mice. Using in vivo imaging techniques, optical coherence tomography, scanning laser ophthalmoscopy, and two-photon microscopy, along with in vitro histologic analysis of retinal morphology, we found that treatment with 11-cis-6-membered ring-retinal before light stimulation prevented rod and cone photoreceptor degradation and preserved functional acuity in these mice. Moreover, additive accumulation of 11-cis-6-membered ring-retinal measured in the eyes of these mice by quantitative liquid chromatography-mass spectrometry indicated stable binding of this retinoid to opsin. Together, these results suggest that eliminating excess of unliganded opsin can prevent light-induced retinal degeneration in Abca4-/-Rdh8-/- mice.


Asunto(s)
Sustancias Protectoras/farmacología , Retina/efectos de los fármacos , Degeneración Retiniana/tratamiento farmacológico , Transportadoras de Casetes de Unión a ATP/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Animales , Diterpenos , Luz , Degeneración Macular/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Opsinas/metabolismo , Retina/metabolismo , Retinaldehído/metabolismo , Retinoides/metabolismo
19.
Nat Commun ; 9(1): 1976, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29773803

RESUMEN

Rhodopsin homeostasis is tightly coupled to rod photoreceptor cell survival and vision. Mutations resulting in the misfolding of rhodopsin can lead to autosomal dominant retinitis pigmentosa (adRP), a progressive retinal degeneration that currently is untreatable. Using a cell-based high-throughput screen (HTS) to identify small molecules that can stabilize the P23H-opsin mutant, which causes most cases of adRP, we identified a novel pharmacological chaperone of rod photoreceptor opsin, YC-001. As a non-retinoid molecule, YC-001 demonstrates micromolar potency and efficacy greater than 9-cis-retinal with lower cytotoxicity. YC-001 binds to bovine rod opsin with an EC50 similar to 9-cis-retinal. The chaperone activity of YC-001 is evidenced by its ability to rescue the transport of multiple rod opsin mutants in mammalian cells. YC-001 is also an inverse agonist that non-competitively antagonizes rod opsin signaling. Significantly, a single dose of YC-001 protects Abca4 -/- Rdh8 -/- mice from bright light-induced retinal degeneration, suggesting its broad therapeutic potential.


Asunto(s)
Fármacos Neuroprotectores/farmacología , Pliegue de Proteína/efectos de los fármacos , Degeneración Retiniana/tratamiento farmacológico , Células Fotorreceptoras Retinianas Bastones/efectos de los fármacos , Rodopsina/metabolismo , Tiofenos/farmacología , Transportadoras de Casetes de Unión a ATP/genética , Oxidorreductasas de Alcohol/genética , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Diterpenos , Femenino , Células HEK293 , Ensayos Analíticos de Alto Rendimiento , Humanos , Luz/efectos adversos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Células 3T3 NIH , Fármacos Neuroprotectores/uso terapéutico , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , Degeneración Retiniana/etiología , Degeneración Retiniana/patología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/patología , Células Fotorreceptoras Retinianas Bastones/efectos de la radiación , Retinaldehído/farmacología , Retinaldehído/uso terapéutico , Rodopsina/agonistas , Rodopsina/antagonistas & inhibidores , Rodopsina/genética , Tiofenos/uso terapéutico , Resultado del Tratamiento
20.
Nat Commun ; 9(1): 1996, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29777099

RESUMEN

G protein-coupled receptors (GPCRs) activate heterotrimeric G proteins by mediating a GDP to GTP exchange in the Gα subunit. This leads to dissociation of the heterotrimer into Gα-GTP and Gßγ dimer. The Gα-GTP and Gßγ dimer each regulate a variety of downstream pathways to control various aspects of human physiology. Dysregulated Gßγ-signaling is a central element of various neurological and cancer-related anomalies. However, Gßγ also serves as a negative regulator of Gα that is essential for G protein inactivation, and thus has the potential for numerous side effects when targeted therapeutically. Here we report a llama-derived nanobody (Nb5) that binds tightly to the Gßγ dimer. Nb5 responds to all combinations of ß-subtypes and γ-subtypes and competes with other Gßγ-regulatory proteins for a common binding site on the Gßγ dimer. Despite its inhibitory effect on Gßγ-mediated signaling, Nb5 has no effect on Gαq-mediated and Gαs-mediated signaling events in living cells.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Anticuerpos de Dominio Único/metabolismo , Sitios de Unión , Dimerización , Subunidades alfa de la Proteína de Unión al GTP/química , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades beta de la Proteína de Unión al GTP/química , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades gamma de la Proteína de Unión al GTP/química , Subunidades gamma de la Proteína de Unión al GTP/genética , Guanosina Trifosfato/metabolismo , Humanos , Unión Proteica , Transducción de Señal , Anticuerpos de Dominio Único/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA