Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Phys Med Biol ; 68(17)2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37414003

RESUMEN

Objective. To report the use of a portable primary standard level graphite calorimeter for direct dose determination in clinical pencil beam scanning proton beams, which forms part of the recommendations of the proposed Institute of Physics and Engineering in Medicine (IPEM) Code of Practice (CoP) for proton therapy dosimetry.Approach. The primary standard proton calorimeter (PSPC) was developed at the National Physical Laboratory (NPL) and measurements were performed at four clinical proton therapy facilities that use pencil beam scanning for beam delivery. Correction factors for the presence of impurities and vacuum gaps were calculated and applied, as well as dose conversion factors to obtain dose to water. Measurements were performed in the middle of 10 × 10 × 10 cm3homogeneous dose volumes, centred at 10.0, 15.0 and 25.0 g·cm-2depth in water. The absorbed dose to water determined with the calorimeter was compared to the dose obtained using PTW Roos-type ionisation chambers calibrated in terms of absorbed dose to water in60Co applying the recommendations in the IAEA TRS-398 CoP.Main results.The relative dose difference between the two protocols varied between 0.4% and 2.1% depending on the facility. The reported overall uncertainty in the determination of absorbed dose to water using the calorimeter is 0.9% (k= 1), which corresponds to a significant reduction of uncertainty in comparison with the TRS-398 CoP (currently with an uncertainty equal or larger than 2.0% (k= 1) for proton beams).Significance. The establishment of a purpose-built primary standard and associated CoP will considerably reduce the uncertainty of the absorbed dose to water determination and ensure improved accuracy and consistency in the dose delivered to patients treated with proton therapy and bring proton reference dosimetry uncertainty in line with megavoltage photon radiotherapy.


Asunto(s)
Grafito , Terapia de Protones , Humanos , Protones , Radiometría/métodos , Agua , Calibración
2.
Phys Med Biol ; 68(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36731142

RESUMEN

Objective. The radiation response of alanine is very well characterized in the MV photon energy range where it can be used to determine the dose delivered with an accuracy better than 1%, making it suitable as a secondary standard detector in cancer radiation therapy. This is not the case in the very low energy keV x-ray range where the alanine response is affected by large uncertainties and is strongly dependent on the x-ray beam energy. This motivated the study undertaken here.Approach. Alanine pellets with a nominal thickness of 0.5 mm and diameter of 5 mm were irradiated with monoenergetic x-rays at the Diamond Light Source synchrotron, to quantify their response in the 8-20 keV range relative to60Co radiation. The absorbed dose to graphite was measured with a small portable graphite calorimeter, and the DOSRZnrc code in the EGSnrc Monte Carlo package was used to calculate conversion factors between the measured dose to graphite and the absorbed dose to water delivered to the alanine pellets. GafChromic EBT3 films were used to measure the beam profile for modelling in the MC simulations.Main results. The relative responses measured in this energy range were found to range from 0.616 to 0.643, with a combined relative expanded uncertainty of 3.4%-3.5% (k= 2), where the majority of the uncertainty originated from the uncertainty in the alanine readout, due to the small size of the pellets used.Significance. The measured values were in good agreement with previously published data in the overlapping region of x-ray energies, while this work extended the dataset to lower energies. By measuring the response to monoenergetic x-rays, the response to a more complex broad-spectrum x-ray source can be inferred if the spectrum is known, meaning that this work supports the establishment of alanine as a secondary standard dosimeter for low-energy x-ray sources.


Asunto(s)
Alanina , Sincrotrones , Rayos X , Alanina/metabolismo , Alanina/efectos de la radiación , Braquiterapia , Grafito , Método de Montecarlo , Neoplasias/radioterapia , Radiometría/métodos , Incertidumbre , Humanos
3.
Phys Med Biol ; 68(7)2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36696694

RESUMEN

Objective. In proton therapy there is a need for proton optimised tissue-equivalent materials as existing phantom materials can produce large uncertainties in the determination of absorbed dose and range measurements. The aim of this work is to develop and characterise optimised tissue-equivalent materials for proton therapy.Approach. A mathematical model was developed to enable the formulation of epoxy-resin based tissue-equivalent materials that are optimised for all relevant interactions of protons with matter, as well as photon interactions, which play a role in the acquisition of CT numbers. This model developed formulations for vertebra bone- and skeletal muscle-equivalent plastic materials. The tissue equivalence of these new materials and commercial bone- and muscle-equivalent plastic materials were theoretical compared against biological tissue compositions. The new materials were manufactured and characterised by their mass density, relative stopping power (RSP) measurements, and CT scans to evaluate their tissue-equivalence.Main results. Results showed that existing tissue-equivalent materials can produce large uncertainties in proton therapy dosimetry. In particular commercial bone materials showed to have a relative difference up to 8% for range. On the contrary, the best optimised formulations were shown to mimic their target human tissues within 1%-2% for the mass density and RSP. Furthermore, their CT-predicted RSP agreed within 1%-2% of the experimental RSP, confirming their suitability as clinical phantom materials.Significance. We have developed a tool for the formulation of tissue-equivalent materials optimised for proton dosimetry. Our model has enabled the development of proton optimised tissue-equivalent materials which perform better than existing tissue-equivalent materials. These new materials will enable the advancement of clinical proton phantoms for accurate proton dosimetry.


Asunto(s)
Terapia de Protones , Humanos , Terapia de Protones/métodos , Protones , Radiometría , Fantasmas de Imagen , Plásticos
4.
Phys Med Biol ; 67(22)2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36170868

RESUMEN

Objective. A calibration service based on a primary standard calorimeter for the direct determination of absorbed dose for proton beams does not exist. A new Code of Practice (CoP) for reference dosimetry of proton beams is being developed by a working party of the UK Institute of Physics and Engineering in Medicine (IPEM), which will recommend that ionisation chambers are calibrated directly in their clinical beams against the proposed Primary Standard Proton Calorimeter (PSPC) developed at the National Physical Laboratory (NPL). The aim of this work is to report on the use of the NPL PSPC to directly calibrate ionisation chambers in a low-energy passively scattered proton beam following recommendations of the upcoming IPEM CoP.Approach. A comparison between the dose derived using the proposed IPEM CoP and the IAEA TRS-398 protocol was performed, andkQvalues were determined experimentally for three types of chambers. In total, 9 plane-parallel and 3 cylindrical chambers were calibrated using the two protocols for two separate visits.Main results. The ratio of absorbed dose to water obtained with the PSPC and with ionisation chambers applying TRS-398 varied between 0.98 and 1.00, depending on the chamber type. The new procedure based on the PSPC provides a significant improvement in uncertainty where absorbed dose to water measured with a user chamber is reported with an uncertainty of 0.9% (1σ), whereas the TRS-398 protocol reports an uncertainty of 2.0% and 2.3% (1σ) for cylindrical and plane-parallel chambers, respectively. ThekQvalues found agree within uncertainties with those from TRS-398 and Monte Carlo calculations.Significance. The establishment of a primary standard calorimeter for the determination of absorbed dose in proton beams combined with the introduction of the associated calibration service following the IPEM recommendations will reduce the uncertainty and improve consistency in the dose delivered to patients.


Asunto(s)
Grafito , Radioterapia de Alta Energía , Humanos , Radioterapia de Alta Energía/métodos , Protones , Dosificación Radioterapéutica , Radiometría/métodos , Calibración , Agua
5.
Phys Med ; 93: 59-68, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34968893

RESUMEN

PURPOSE: In particle therapy, determination of range by measurement or calculation can be a significant source of uncertainty. This work investigates the development of a bespoke Range Length Phantom (RaLPh) to allow independent determination of proton range in tissue. This phantom is intended to be used as an audit device. METHOD: RaLPh was designed to be compact and allows different configurations of tissue substitute slabs, to facilitate measurement of range using radiochromic film. Fourteen RaLPh configurations were tested, using two types of proton fluence optimised water substitutes, two types of bone substitute, and one lung substitute slabs. These were designed to mimic different complex tissue interfaces. Experiments were performed using a 115 MeV mono-energetic scanning proton beam to investigate the proton range for each configuration. Validation of the measured film ranges was performed via Monte Carlo simulations and ionisation chamber measurements. The phantom was then assessed as an audit device, by comparing film measurements with Treatment Planning System (TPS) predicted ranges. RESULTS: Varying the phantom slab configurations allowed for measurable range differences, and the best combinations of heterogeneous material gave agreement between film and Monte Carlo on average within 0.2% and on average within 0.3% of ionisation chamber measurements. Results against the TPS suggest a material density override is currently required to enable the phantom to be an audit device. CONCLUSION: This study found that a heterogeneous phantom with radiochromic film can provide range verification as part of a dedicated audit for clinical proton therapy beams.


Asunto(s)
Terapia de Protones , Método de Montecarlo , Fantasmas de Imagen , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
6.
Sci Rep ; 10(1): 9089, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32493952

RESUMEN

High dose-rate radiotherapy, known as FLASH, has been shown to increase the differential response between healthy and tumour tissue. Moreover, Very High Energy Electrons (VHEEs) provide more favourable dose distributions than conventional radiotherapy electron and photon beams. Plane-parallel ionisation chambers are the recommended secondary standard systems for clinical reference dosimetry of electrons, therefore chamber response to these high energy and high dose-per-pulse beams must be well understood. Graphite calorimetry, the UK primary standard, has been employed to measure the dose delivered from a 200 MeV pulsed electron beam. This was compared to the charge measurements of a plane-parallel ionisation chamber to determine the absolute collection efficiency and infer the ion recombination factor. The dose-per-pulse measured by the calorimeter ranged between 0.03 Gy/pulse and 5.26 Gy/pulse, corresponding to collection efficiencies between 97% and 4%, respectively. Multiple recombination models currently available have been compared with experimental results. This work is directly applicable to the development of standard dosimetry protocols for VHEE radiotherapy, FLASH radiotherapy and other high dose-rate modalities. However, the use of secondary standard ionisation chambers for the dosimetry of high dose-per-pulse VHEEs has been shown to require large corrections for charge collection inefficiency.

7.
Phys Med Biol ; 65(12): 125015, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32340002

RESUMEN

Four-dimensional dose calculation (4D-DC) is crucial for predicting the dosimetric outcome in the presence of intra-fractional organ motion. Time-resolved dosimetry can provide significant insights into 4D pencil beam scanning dose accumulation and is therefore irreplaceable for benchmarking 4D-DC. In this study a novel approach of time-resolved dosimetry using five PinPoint ionization chambers (ICs) embedded in an anthropomorphic dynamic phantom was employed and validated against beam delivery details. Beam intensity variations as well as the beam delivery time structure were well reflected with an accuracy comparable to the temporal resolution of the IC measurements. The 4D dosimetry approach was further applied for benchmarking the 4D-DC implemented in the RayStation 6.99 treatment planning system. Agreement between computed values and measurements was investigated for (i) partial doses based on individual breathing phases, and (ii) temporally distributed cumulative doses. For varied beam delivery and patient-related parameters the average unsigned dose difference for (i) was 0.04 ± 0.03 Gy over all considered IC measurement values, while the prescribed physical dose was 2 Gy. By implementing (ii), a strong effect of the dose gradient on measurement accuracy was observed. The gradient originated from scanned beam energy modulation and target motion transversal to the beam. Excluding measurements in the high gradient the relative dose difference between measurements and 4D-DCs for a given treatment plan at the end of delivery was 3.5% on average and 6.6% at maximum over measurement points inside the target. Overall, the agreement between 4D dose measurements in the moving phantom and retrospective 4D-DC was found to be comparable to the static dose differences for all delivery scenarios. The presented 4D-DC has been proven to be suitable for simulating treatment deliveries with various beam- as well as patient-specific parameters and can therefore be employed for dosimetric validation of different motion mitigation techniques.


Asunto(s)
Tomografía Computarizada Cuatridimensional , Terapia de Protones , Radiometría , Planificación de la Radioterapia Asistida por Computador , Fraccionamiento de la Dosis de Radiación , Humanos , Movimientos de los Órganos , Fantasmas de Imagen , Respiración , Factores de Tiempo
8.
Phys Med Biol ; 65(5): 05TR02, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31627202

RESUMEN

This article reviews the development and summarizes the state-of-the-art in absorbed dose calorimetry for all the common clinical beam modalities covered in reference dosimetry codes of practice, as well as for small and nonstandard fields, and brachytherapy. It focuses primarily on work performed in the last ten years by national laboratories and research institutions and is not restricted to primary standard instruments. The most recent absorbed dose calorimetry review article was published over twenty years ago by Ross and Klassen (1996 Phys. Med. Biol. 41 1-29), and even then, its scope was limited to water calorimeters. Since the application of calorimetry to the measurement of radiation has a long and often overlooked history, a brief introduction into its origins is provided, along with a summary of some of the landmark research that have shaped the current landscape of absorbed dose calorimeters. Technical descriptions of water and graphite calorimetry are kept general, as these have been detailed extensively in relatively recent review articles (e.g. McEwen and DuSautoy (2009 Metrologia 46 S59-79) and Seuntjens and Duane (2009 Metrologia 46 S39-58). The review categorizes calorimeters by the radiation type for which they are applied; from the widely established standards for Co-60 and high-energy x-rays, to the prototype calorimeters used in high-energy electrons and hadron therapy. In each case, focus is placed on the issues and constraints affecting dose measurement in that beam type, and the innovations developed to meet these requirements. For photons, electrons, proton and carbon ion beams, a summary of the ionization chamber beam quality conversion factors (k Q ) determined using said calorimeters is also provided. The article closes with a look forward to some of the most promising new techniques and areas of research and speculates about the future clinical role of absorbed dose calorimetry.


Asunto(s)
Calorimetría , Radiometría/métodos , Dosis de Radiación , Radiometría/instrumentación
9.
Phys Med Biol ; 64(23): 235001, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31652424

RESUMEN

Anthropomorphic phantoms mimicking organ and tumor motion of patients are essential for end-to-end testing of motion mitigation techniques in ion beam therapy. In this work a commissioning procedure developed with the in-house designed respiratory phantom ARDOS (Advanced Radiation DOSimetry system) is presented. The phantom was tested and benchmarked for 4D dose verification in proton therapy, which included: characterization of the tissue equivalent materials from computed tomography (CT) imaging, assessment of dose calculation accuracy in critical structures of the phantom, and testing various detectors for proton dosimetry in the ARDOS phantom. To prove the validity of the CT calibration curve, measured relative stopping powers (RSP) of the ARDOS materials were compared with values from CTs: original and overwritten with known material parameters. Override of rib- and soft-tissue phantom components improved RSP accuracy while inhomogeneous lung tissue, represented by the balsa wood, was better modelled by the CT Hounsfield units. Monte Carlo (MC) dose calculations were benchmarked against measurements with a reference Farmer chamber embedded in ARDOS material samples showing less than 3% relative dose difference. Differences between MC calculated dose distributions and those calculated by analytical algorithms for the ARDOS geometry were higher than 20% of the prescribed dose, depending on the position in the phantom. Pinpoint ionization chambers and thermoluminescence dosimeters showed differences of up to 5.5% compared to MC dose calculations for all lung setups in the static phantom. They were also able to detect dose distortions due to motion. EBT3 film dosimetry was shown to be suitable for 2D relative dose characterization, which could provide extended information on dose distributions in the penumbra area. The presented methodology and results can be used for drafting general recommendations for dynamic phantom commissioning, which is an essential step towards end-to-end evaluation of motion mitigation techniques in ion beam therapy.


Asunto(s)
Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Pulmón/diagnóstico por imagen , Terapia de Protones/métodos , Algoritmos , Calibración , Diseño de Equipo , Dosimetría por Película , Humanos , Método de Montecarlo , Movimiento (Física) , Fantasmas de Imagen , Protones , Radiometría/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Reproducibilidad de los Resultados , Dosimetría Termoluminiscente , Tomografía Computarizada por Rayos X , Agua , Madera
10.
Phys Med Biol ; 64(17): 17NT01, 2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31342920

RESUMEN

This work describes the dosimetric commissioning of the treatment planning system (TPS) RayStation v6.1 from RaySearch Laboratories (Stockholm, Sweden) for a synchrotron-based scanned proton beam delivery with isocentric and non-isocentric setups at MedAustron. Focus was on the comparison of the pencil beam (PBv4.1) and Monte Carlo (MCv4.0) calculation algorithms. Commissioning of dose calculations was done first for 1D/2D dose delivery where the performance of the beam model in reproducing dosimetric properties for the delivery of single static pencil beams and mono-energetic layers with multiple spots was evaluated. The commissioning for 3D beam delivery employed test cases with increasing complexity: from box-shaped fields in homogeneous phantoms to the introduction of oblique incidences and inhomogeneities. Dose calculations were compared to the measured data for different air gaps and using beams with and without range shifter (RaShi). Depth-dose curves and spot shape comparisons showed good agreement of the results obtained with PBv4.1 and MCv4.0 algorithms at isocentric setup for open beam configurations (without RaShi). Comparison of transverse dose profiles for lateral heterogeneities at different depths showed better performance of the MCv4.0 algorithm in comparison to the PBv4.1 algorithm. In the case of 3D delivery comparisons of measured and TPS-calculated dose with MCv4.0 algorithm in box-shaped fields in water showed an average agreement within 2%. The results for dose calculations with the PBv4.1 algorithm showed larger deviations for beams with RaShi at all evaluated air gaps (from 64.8 cm to 14.8 cm). Our results suggest that the MCv4.0 algorithm shall be used in clinics for final dose calculation when beams with RaShi are used especially in the presence of large air gaps, inclined patient surface and lateral inhomogeneities. The detailed stepwise methodology implemented for the RayStation commissioning in this work could serve as further guidance for other facilities introducing a new TPS for proton beam therapy.


Asunto(s)
Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Algoritmos , Humanos , Método de Montecarlo , Fantasmas de Imagen , Dosificación Radioterapéutica
11.
Phys Med Biol ; 63(18): 185020, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30152791

RESUMEN

The increased use of complex forms of radiotherapy using small-field photon and proton beams has invoked a growing interest in the use of micro-ionization chambers. In this study, 48 PTW-TM31015 PinPoint-type micro-ionization chambers that are used in the commissioning and patient specific QA of a proton pencil beam scanning (PBS) delivery system have been characterized in proton and high-energy photon beams. In both beam modalities, the entire set of PinPoint chambers was characterized by imaging them, by evaluating their stability using check source measurements, by experimentally determining the ion recombination, polarity effect and by cross calibrating them in terms of absorbed dose to water against Farmer-type ionization chambers. Beam quality correction factors were theoretically derived for both beam modalities. None of the chambers' check source readings drifted by more than 0.5% over a one year period. Beam quality correction factors for the 6 MV photon with reference to 60Co were on average 1.0 ± 0.5% lower than the theoretical values calculated according to the data and procedures outlined in IAEA TRS-398. While this difference is within the overall dosimetric uncertainty, it is significant considering only uncorrelated uncertainties indicating inconsistencies in the theoretical data. Beam quality correction factors for the 179.2 MeV proton beam with reference to 60Co were in good agreement with the theoretical data. Ion recombination and polarity correction factors were very consistent for all chambers with standard deviations of 0.2% or below show that findings from more comprehensive investigations in the literature can be considered as representative for all the chambers of this type. The characterization of 48 PinPoint-type micro-ionization chambers performed in this study provided a unique opportunity to investigate chamber-to-chamber variations of calibration, beam quality correction factors, ion recombination and polarity correction factors for an unprecedented sample size of chambers for both high-energy photon and proton beams.


Asunto(s)
Fotones , Terapia de Protones/instrumentación , Protones , Calibración , Radioisótopos de Cobalto/normas , Humanos , Terapia de Protones/normas , Radiometría/métodos , Efectividad Biológica Relativa
12.
Phys Med Biol ; 63(5): 055001, 2018 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-29384730

RESUMEN

This paper describes end-to-end test procedures as the last fundamental step of medical commissioning before starting clinical operation of the MedAustron synchrotron-based pencil beam scanning (PBS) therapy facility with protons. One in-house homogeneous phantom and two anthropomorphic heterogeneous (head and pelvis) phantoms were used for end-to-end tests at MedAustron. The phantoms were equipped with alanine detectors, radiochromic films and ionization chambers. The correction for the 'quenching' effect of alanine pellets was implemented in the Monte Carlo platform of the evaluation version of RayStation TPS. During the end-to-end tests, the phantoms were transferred through the workflow like real patients to simulate the entire clinical workflow: immobilization, imaging, treatment planning and dose delivery. Different clinical scenarios of increasing complexity were simulated: delivery of a single beam, two oblique beams without and with range shifter. In addition to the dose comparison in the plastic phantoms the dose obtained from alanine pellet readings was compared with the dose determined with the Farmer ionization chamber in water. A consistent systematic deviation of about 2% was found between alanine dosimetry and the ionization chamber dosimetry in water and plastic materials. Acceptable agreement of planned and delivered doses was observed together with consistent and reproducible results of the end-to-end testing performed with different dosimetric techniques (alanine detectors, ionization chambers and EBT3 radiochromic films). The results confirmed the adequate implementation and integration of the new PBS technology at MedAustron. This work demonstrates that alanine pellets are suitable detectors for end-to-end tests in proton beam therapy and the developed procedures with customized anthropomorphic phantoms can be used to support implementation of PBS technology in clinical practice.


Asunto(s)
Alanina/química , Cabeza/diagnóstico por imagen , Pelvis/diagnóstico por imagen , Fantasmas de Imagen , Protones , Radiometría/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Humanos , Método de Montecarlo , Dosis de Radiación , Sincrotrones
13.
Phys Med Biol ; 62(7): N134-N146, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28211796

RESUMEN

The aim of this work is to develop and adapt a formalism to determine absorbed dose to water from graphite calorimetry measurements in carbon-ion beams. Fluence correction factors, [Formula: see text], needed when using a graphite calorimeter to derive dose to water, were determined in a clinical high-energy carbon-ion beam. Measurements were performed in a 290 MeV/n carbon-ion beam with a field size of 11 × 11 cm2, without modulation. In order to sample the beam, a plane-parallel Roos ionization chamber was chosen for its small collecting volume in comparison with the field size. Experimental information on fluence corrections was obtained from depth-dose measurements in water. This procedure was repeated with graphite plates in front of the water phantom. Fluence corrections were also obtained with Monte Carlo simulations through the implementation of three methods based on (i) the fluence distributions differential in energy, (ii) a ratio of calculated doses in water and graphite at equivalent depths and (iii) simulations of the experimental setup. The [Formula: see text] term increased in depth from 1.00 at the entrance toward 1.02 at a depth near the Bragg peak, and the average difference between experimental and numerical simulations was about 0.13%. Compared to proton beams, there was no reduction of the [Formula: see text] due to alpha particles because the secondary particle spectrum is dominated by projectile fragmentation. By developing a practical dose conversion technique, this work contributes to improving the determination of absolute dose to water from graphite calorimetry in carbon-ion beams.


Asunto(s)
Calorimetría/métodos , Grafito/química , Radioterapia de Iones Pesados/instrumentación , Radioterapia de Iones Pesados/métodos , Fantasmas de Imagen , Algoritmos , Simulación por Computador , Humanos , Método de Montecarlo , Radiometría/métodos , Agua/química
14.
Phys Med Biol ; 61(21): 7623-7638, 2016 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-27740943

RESUMEN

Water-equivalent plastics are frequently used in dosimetry for experimental simplicity. This work evaluates the water-equivalence of novel water-equivalent plastics specifically designed for light-ion beams, as well as commercially available plastics in a clinical high-energy carbon-ion beam. A plastic- to-water conversion factor [Formula: see text] was established to derive absorbed dose to water in a water phantom from ionization chamber readings performed in a plastic phantom. Three trial plastic materials with varying atomic compositions were produced and experimentally characterized in a high-energy carbon-ion beam. Measurements were performed with a Roos ionization chamber, using a broad un-modulated beam of 11 × 11 cm2, to measure the plastic-to-water conversion factor for the novel materials. The experimental results were compared with Monte Carlo simulations. Commercially available plastics were also simulated for comparison with the plastics tested experimentally, with particular attention to the influence of nuclear interaction cross sections. The measured [Formula: see text] correction increased gradually from 0% at the surface to 0.7% at a depth near the Bragg peak for one of the plastics prepared in this work, while for the other two plastics a maximum correction of 0.8%-1.3% was found. Average differences between experimental and numerical simulations were 0.2%. Monte Carlo results showed that for polyethylene, polystyrene, Rando phantom soft tissue and A-150, the correction increased from 0% to 2.5%-4.0% with depth, while for PMMA it increased to 2%. Water-equivalent plastics such as, Plastic Water, RMI-457, Gammex 457-CTG, WT1 and Virtual Water, gave similar results where maximum corrections were of the order of 2%. Considering the results from Monte Carlo simulations, one of the novel plastics was found to be superior in comparison with the plastic materials currently used in dosimetry, demonstrating that it is feasible to tailor plastic materials to be water-equivalent for carbon ions specifically.


Asunto(s)
Carbono/química , Modelos Teóricos , Fantasmas de Imagen , Plásticos/química , Radioterapia de Alta Energía/instrumentación , Agua/química , Humanos , Método de Montecarlo , Radiometría/métodos , Radioterapia de Alta Energía/normas
15.
Phys Med ; 32(9): 1135-8, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27567088

RESUMEN

This study was initiated following conclusions from earlier experimental work, performed in a low-energy carbon ion beam, indicating a significant LET dependence of the response of a PTW-60019 microDiamond detector. The purpose of this paper is to present a comparison between the response of the same PTW-60019 microDiamond detector and an IBA Roos-type ionization chamber as a function of depth in a 62MeV proton beam. Even though proton beams are considered as low linear energy transfer (LET) beams, the LET value increases slightly in the Bragg peak region. Contrary to the observations made in the carbon ion beam, in the 62MeV proton beam good agreement is found between both detectors in both the plateau and the distal edge region. No significant LET dependent response of the PTW-60019 microDiamond detector is observed consistent with other findings for proton beams in the literature, despite this particular detector exhibiting a substantial LET dependence in a carbon ion beam.


Asunto(s)
Radiometría/métodos , Algoritmos , Calibración , Carbono/química , Diamante , Diseño de Equipo , Iones , Transferencia Lineal de Energía , Protones , Radiometría/instrumentación , Reproducibilidad de los Resultados
16.
Med Phys ; 43(7): 4198, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27370139

RESUMEN

PURPOSE: In this work, ion recombination is studied as a function of energy and depth in carbon ion beams. METHODS: Measurements were performed in three different passively scattered carbon ion beams with energies of 62 MeV/n, 135 MeV/n, and 290 MeV/n using various types of plane-parallel ionization chambers. Experimental results were compared with two analytical models for initial recombination. One model is generally used for photon beams and the other model, developed by Jaffé, takes into account the ionization density along the ion track. An investigation was carried out to ascertain the effect on the ion recombination correction with varying ionization chamber orientation with respect to the direction of the ion tracks. The variation of the ion recombination correction factors as a function of depth was studied for a Markus ionization chamber in the 62 MeV/n nonmodulated carbon ion beam. This variation can be related to the depth distribution of linear energy transfer. RESULTS: Results show that the theory for photon beams is not applicable to carbon ion beams. On the other hand, by optimizing the value of the ionization density and the initial mean-square radius, good agreement is found between Jaffé's theory and the experimental results. As predicted by Jaffé's theory, the results confirm that ion recombination corrections strongly decrease with an increasing angle between the ion tracks and the electric field lines. For the Markus ionization chamber, the variation of the ion recombination correction factor with depth was modeled adequately by a sigmoid function, which is approximately constant in the plateau and strongly increasing in the Bragg peak region to values of up to 1.06. Except in the distal edge region, all experimental results are accurately described by Jaffé's theory. CONCLUSIONS: Experimental results confirm that ion recombination in the investigated carbon ion beams is dominated by initial recombination. Ion recombination corrections are found to be significant and cannot be neglected for reference dosimetry and for the determination of depth dose curves in carbon ion beams.


Asunto(s)
Carbono/uso terapéutico , Iones/uso terapéutico , Radioterapia/métodos , Algoritmos , Simulación por Computador , Ciclotrones , Modelos Teóricos , Método de Montecarlo , Radioterapia/instrumentación , Sincrotrones
17.
Phys Med Biol ; 61(12): 4551-63, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27224547

RESUMEN

To investigate the linear energy transfer (LET) dependence of the response of a PTW-60019 Freiburg microDiamond detector, its response was compared to the response of a plane-parallel Markus chamber in a 62 MeV/n mono-energetic carbon ion beam. Results obtained with two different experimental setups are in agreement. As recommended by IAEA TRS-398, the response of the Markus chamber was corrected for temperature, pressure, polarity effects and ion recombination. No correction was applied to the response of the microDiamond detector. The ratio of the response of the Markus chamber to the response of the microDiamond is close to unity in the plateau region. In the Bragg peak region, a significant increase of the ratio is observed, which increases to 1.2 in the distal edge region. Results indicate a correlation between the under-response of the microDiamond detector and high LET values. The combined relative standard uncertainty of the results is estimated to be 2.38% in the plateau region and 12% in the distal edge region. These values are dominated by the uncertainty of alignment in the non-uniform beam and the uncertainty of range determination.


Asunto(s)
Radioterapia de Iones Pesados/métodos , Transferencia Lineal de Energía , Dosímetros de Radiación/normas , Carbono/química , Radioterapia de Iones Pesados/normas , Radiometría/métodos , Estándares de Referencia
18.
Med Phys ; 42(1): 400-11, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25563280

RESUMEN

PURPOSE: The response of alanine solid state dosimeters to ionizing radiation strongly depends on particle type and energy. Due to nuclear interactions, neutron fields usually also consist of secondary particles such as photons and protons of diverse energies. Various experiments have been carried out in three different neutron beams to explore the alanine dose response behavior and to validate model predictions. Additionally, application in medical neutron fields for boron neutron capture therapy is discussed. METHODS: Alanine detectors have been irradiated in the thermal neutron field of the research reactor TRIGA Mainz, Germany, in five experimental conditions, generating different secondary particle spectra. Further irradiations have been made in the epithermal neutron beams at the research reactors FiR 1 in Helsinki, Finland, and Tsing Hua open pool reactor in HsinChu, Taiwan ROC. Readout has been performed with electron spin resonance spectrometry with reference to an absorbed dose standard in a (60)Co gamma ray beam. Absorbed doses and dose components have been calculated using the Monte Carlo codes fluka and mcnp. The relative effectiveness (RE), linking absorbed dose and detector response, has been calculated using the Hansen & Olsen alanine response model. RESULTS: The measured dose response of the alanine detector in the different experiments has been evaluated and compared to model predictions. Therefore, a relative effectiveness has been calculated for each dose component, accounting for its dependence on particle type and energy. Agreement within 5% between model and measurement has been achieved for most irradiated detectors. Significant differences have been observed in response behavior between thermal and epithermal neutron fields, especially regarding dose composition and depth dose curves. The calculated dose components could be verified with the experimental results in the different primary and secondary particle fields. CONCLUSIONS: The alanine detector can be used without difficulty in neutron fields. The response has been understood with the model used which includes the relative effectiveness. Results and the corresponding discussion lead to the conclusion that application in neutron fields for medical purpose is limited by its sensitivity but that it is a useful tool as supplement to other detectors and verification of neutron source descriptions.


Asunto(s)
Alanina/efectos de la radiación , Terapia por Captura de Neutrón de Boro/instrumentación , Neutrones/uso terapéutico , Radiometría/instrumentación , Terapia por Captura de Neutrón de Boro/métodos , Radioisótopos de Cobalto/uso terapéutico , Simulación por Computador , Relación Dosis-Respuesta en la Radiación , Espectroscopía de Resonancia por Spin del Electrón , Rayos gamma/uso terapéutico , Modelos Teóricos , Método de Montecarlo , Fotones , Protones , Radiometría/métodos
19.
Br J Radiol ; 88(1045): 20140392, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25257709

RESUMEN

Proton and ion beams are radiotherapy modalities of increasing importance and interest. Because of the different biological dose response of these radiations as compared with high-energy photon beams, the current approach of treatment prescription is based on the product of the absorbed dose to water and a biological weighting factor, but this is found to be insufficient for providing a generic method to quantify the biological outcome of radiation. It is therefore suggested to define new dosimetric quantities that allow a transparent separation of the physical processes from the biological ones. Given the complexity of the initiation and occurrence of biological processes on various time and length scales, and given that neither microdosimetry nor nanodosimetry on their own can fully describe the biological effects as a function of the distribution of energy deposition or ionization, a multiscale approach is needed to lay the foundation for the aforementioned new physical quantities relating track structure to relative biological effectiveness in proton and ion beam therapy. This article reviews the state-of-the-art microdosimetry, nanodosimetry, track structure simulations, quantification of reactive species, reference radiobiological data, cross-section data and multiscale models of biological response in the context of realizing the new quantities. It also introduces the European metrology project, Biologically Weighted Quantities in Radiotherapy, which aims to investigate the feasibility of establishing a multiscale model as the basis of the new quantities. A tentative generic expression of how the weighting of physical quantities at different length scales could be carried out is presented.


Asunto(s)
Radiobiología/tendencias , Radiometría/tendencias , Humanos , Dosificación Radioterapéutica , Efectividad Biológica Relativa
20.
Radiat Prot Dosimetry ; 161(1-4): 92-5, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24336190

RESUMEN

Developments in hadron therapy require efforts to improve the accuracy of the dose delivered to a target volume. Here, the determination of the absorbed dose under reference conditions was analysed. Based on the International Atomic Energy Agency TRS-398 code of practice, for hadron beams, the combined standard uncertainty on absorbed dose to water under reference conditions, derived from ionisation chambers, is too large. This uncertainty is dominated by the beam quality correction factors, [Formula: see text], mainly due to the mean energy to produce one ion pair in air, wair. A method to reduce this uncertainty is to carry out primary dosimetry, using calorimetry. A [Formula: see text]-value can be derived from a direct comparison between calorimetry and ionometry. Here, this comparison is performed using a graphite calorimeter in an 80-MeV A(-1) carbon ion beam. Assuming recommended TRS-398 values of water-to-graphite stopping power ratio and the perturbation factor for an ionisation chamber, preliminary results indicate a wair-value of 35.5 ± 0.9 J C(-1).


Asunto(s)
Calorimetría/métodos , Grafito/química , Radiometría/métodos , Aire , Calibración , Carbono , Calor , Humanos , Iones , Método de Montecarlo , Radiometría/instrumentación , Dosificación Radioterapéutica , Valores de Referencia , Reproducibilidad de los Resultados , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA